ウォームアップにおける各種ストレッチングがパフォーマンスに及ぼす影響

山口 太一*, 石井 與二**

I. はじめに

ウォームアップにおいてストレッチングを取り入れることはごく一般的なことである。その目的はストレッチングによる柔軟性の向上をはじめとする効果により、傷害を予防したり、より良いパフォーマンス発揮を実現したりするためである。しかしながら、パフォーマンスに対するストレッチングの効果について検討した研究においては、必ずしもストレッチングがより良いパフォーマンス発揮に繋がらないことを示している。これまでウォームアップにおけるストレッチングがパフォーマンスに及ぼす影響について我々は2007年121および2010年122の2度にわたって総論を行ってきた。しかしながら、その後も我々が加えるだけでも20幅を超える研究論文が報告されている。そこで本稿では現時点で発表された見解を再度まとめ直すとともに、それらに基づいてウォームアップにおいてより良いパフォーマンス発揮に繋がるような適切な方法を提示したい。さらに、今後の研究課題についても述べていきたい。

II. 各種ストレッチングがパフォーマンスに及ぼす影響

A. スタティック（静的）ストレッチングがパフォーマンスに及ぼす影響

スタティックストレッチング（方法については本特集第1章を参照のこと）がパフォーマンスに及ぼす影響については、1）張力、トルク、最大挙上重量（one repetition maximum：1RM）をはじめとする筋力およびパワーなどの筋機能、2）垂直跳び高および立ち幅跳び距離などの競技能力、短距離走およびアサリティテストなどの走タイム、全力自転車姿勢パワー、ならびにメディシンボールの投擲距離などの発発的な能力、3）走運動あるいは自転車姿勢運動における定常負荷運動時の運動効率、増加負荷運動ないし定常負荷運動の継続時間、自己ベース走における走行距離などの持続的な能力、を指標として検討が行われている。

1. スタティックストレッチングが筋機能に及ぼす影響

1998年にKokkonen et al.17が膝関節伸筋群、膝関節屈筋群、股関節伸筋群および足関節屈筋群に対する

* 防衛学園大学付・健康スポーツ科学研究所
〒069-8501 北海道江別市文京台風町592
E-mail: tsachi@rakuno.ac.jp

** 同志社大学スポーツ健康科学部
〒610-0094 京都府京田辺市多田薬師谷1-3
<table>
<thead>
<tr>
<th>年度</th>
<th>研究者</th>
<th>方法</th>
<th>対象</th>
<th>指標</th>
<th>頻度</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>Kricken et al.</td>
<td>SS</td>
<td>腹部, 前庭機能</td>
<td>15秒×3 (2分)</td>
<td>8</td>
</tr>
<tr>
<td>1999</td>
<td>Allwe et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>1秒×7 (60秒)</td>
<td>23.6秒</td>
</tr>
<tr>
<td>2000</td>
<td>Fox et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>135秒×1 (33秒)</td>
<td>28.5秒</td>
</tr>
<tr>
<td>2001</td>
<td>Nelson et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>30秒×4 (10分)</td>
<td>165秒まで7.0秒</td>
</tr>
<tr>
<td>Nelson et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>30秒×4 (10分)</td>
<td>20秒まで</td>
<td></td>
</tr>
<tr>
<td>Behm et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>45秒×5 (25分)</td>
<td>45秒まで</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>Etovitch et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>30秒×4 (9分)</td>
<td>平均4.0秒</td>
</tr>
<tr>
<td>2004</td>
<td>Crandall et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×4 (16.1分)</td>
<td>60秒まで</td>
</tr>
<tr>
<td>Power et al.</td>
<td>W-up+SS</td>
<td>腹壁, 胸壁</td>
<td>45秒×6 (18分)</td>
<td>5秒まで</td>
<td></td>
</tr>
<tr>
<td>Behm et al.</td>
<td>W-up+SS</td>
<td>腹壁, 胸壁</td>
<td>45秒×3 (28分)</td>
<td>5秒まで</td>
<td></td>
</tr>
<tr>
<td>Crandall et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×4 (16分)</td>
<td>5秒まで</td>
<td></td>
</tr>
<tr>
<td>Weir et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>120秒×5 (10分)</td>
<td>5秒まで</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>Knudson & Mothes</td>
<td>W-up+10 SS</td>
<td>腹壁, 頸裂, 腹壁</td>
<td>10秒</td>
<td>30秒</td>
</tr>
<tr>
<td>Bazett & Jones et al.</td>
<td>SS</td>
<td>腹壁, 腹壁, 腹壁</td>
<td>30秒×3 (23.3分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Meek et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×4 (16.9分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Yamaguchi & Ishii</td>
<td>SS</td>
<td>腹壁, 腹壁, 腹壁</td>
<td>30秒×1 (8.3分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Guisset & plates</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>7秒×7 (4分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Nelson et al.</td>
<td>SS</td>
<td>腹壁, 頸裂, 腹壁</td>
<td>15秒×3 (20分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Papadopoulos et al.</td>
<td>W-up+SS</td>
<td>腹壁, 腹壁</td>
<td>30秒×3 (4.5分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Behm et al.</td>
<td>W-up+SS</td>
<td>腹壁, 腹壁, 腹壁</td>
<td>30秒×3 (24分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Cramer et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×4 (21.2分)</td>
<td>10秒</td>
<td></td>
</tr>
<tr>
<td>Zakas et al.</td>
<td>W-up+45秒 SS</td>
<td>腹壁</td>
<td>15秒×3 (1.5分)</td>
<td>45秒</td>
<td></td>
</tr>
<tr>
<td>Papadopoulos et al.</td>
<td>W-up+SS</td>
<td>腹壁, 腹壁, 腹壁</td>
<td>30秒×3 (25分)</td>
<td>45秒</td>
<td></td>
</tr>
<tr>
<td>Young et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×2 (2分)</td>
<td>45秒</td>
<td></td>
</tr>
<tr>
<td>Brandenburg</td>
<td>W-up+15秒 SS</td>
<td>腹壁</td>
<td>15秒×3 (2.25分)</td>
<td>45秒</td>
<td></td>
</tr>
<tr>
<td>Egan et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>30秒×4 (16.8分)</td>
<td>45秒</td>
<td></td>
</tr>
<tr>
<td>Yamaguchi et al.</td>
<td>SS</td>
<td>腹壁</td>
<td>30秒×4 (20分)</td>
<td>5秒</td>
<td></td>
</tr>
<tr>
<td>Zakas et al.</td>
<td>W-up+15秒 SS</td>
<td>腹壁</td>
<td>15秒×4 (2分)</td>
<td>5秒</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>McBride et al.</td>
<td>W-up+SS</td>
<td>腹壁</td>
<td>33秒×3 (11.5分)</td>
<td>5秒</td>
</tr>
</tbody>
</table>

表1 スタティックストレッチングが筋機能に及ぼす影響について検討した研究。
<table>
<thead>
<tr>
<th>出版年</th>
<th>著者</th>
<th>条件</th>
<th>姿勢</th>
<th>分解時間（秒）</th>
<th>規模</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Cramer et al.</td>
<td>W-up+SS</td>
<td>仰臥</td>
<td>30秒(×4 20.3秒)</td>
<td>等速等長筋力試験 - バレ(60,100度/秒)</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Cramer et al.</td>
<td>W-up+SS</td>
<td>仰臥</td>
<td>30秒(×11 15.8秒)</td>
<td>等速等長筋力試験 - バレ(60,300度/秒)</td>
<td>平均3.4%</td>
</tr>
<tr>
<td></td>
<td>Malott et al.</td>
<td>SS</td>
<td>足底屈</td>
<td>15秒(×5 7秒)</td>
<td>等速等長筋力試験</td>
<td>9.0%</td>
</tr>
<tr>
<td></td>
<td>Apligya & Koojaa</td>
<td>W-up+SS</td>
<td>足底屈</td>
<td>15秒(×5 7秒)</td>
<td>等速等長筋力試験</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Ogura et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×2 2.5秒)</td>
<td>等速等長筋力試験</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Siatras et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>10秒(×1 7秒)</td>
<td>等速等長筋力試験 - バレ(60,180度/秒)</td>
<td>20秒で変化なし</td>
</tr>
<tr>
<td></td>
<td>Mc Hugh & Nesse</td>
<td>SS</td>
<td>等速</td>
<td>90秒(×6 4.9秒)</td>
<td>等速等長筋力試験 - バレ(60,180度/秒)</td>
<td>5度で7.5%</td>
</tr>
<tr>
<td></td>
<td>Hards et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×4 8.2秒)</td>
<td>等速等長筋力試験 (45,61,81,101度)</td>
<td>81度で10.2%</td>
</tr>
<tr>
<td></td>
<td>Torres et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>15秒(×2 7.7秒)</td>
<td>等速等長筋力試験</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Ryan et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×4 3.3秒)</td>
<td>等速等長筋力試験</td>
<td>2.9%</td>
</tr>
<tr>
<td></td>
<td>Samuel et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×3 6.7秒)</td>
<td>等速等長筋力試験 - バレ(60,180度/秒)</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Monson et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×3 6.7秒)</td>
<td>等速等長筋力試験 - バレ(60,180度/秒)</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Beedle et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>15秒(×5 6.5秒)</td>
<td>ベンチプレス1RM</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Allison et al.</td>
<td>SS</td>
<td>等速</td>
<td>20秒(×3 38秒)</td>
<td>等速等長筋力試験</td>
<td>5.6%</td>
</tr>
<tr>
<td>2009</td>
<td>Costa et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×4 18.7秒)</td>
<td>等速等長筋力試験 - バレ(60,180,300度/秒)</td>
<td>60度で9.2%</td>
</tr>
<tr>
<td></td>
<td>Bacourau et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×3 20秒)</td>
<td>ベンチプレス1RM</td>
<td>13.4%</td>
</tr>
<tr>
<td></td>
<td>Winchester et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×1 0.5秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>6.3%</td>
</tr>
<tr>
<td></td>
<td>Gurtjio et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×3 20秒)</td>
<td>腕力トレーニング</td>
<td>7.6%</td>
</tr>
<tr>
<td></td>
<td>Torres et al.</td>
<td>SS</td>
<td>等速</td>
<td>15秒(×3 1.5秒)</td>
<td>腕力</td>
<td>8.7%</td>
</tr>
<tr>
<td></td>
<td>Costa et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×4 19.3秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Fleischer & Monte-Colombo</td>
<td>W-up+SS</td>
<td>等速</td>
<td>15秒(×2 6秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>30秒で9.5%</td>
</tr>
<tr>
<td></td>
<td>Babault et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×2 10.5秒)</td>
<td>等速等長筋力試験</td>
<td>10.1%</td>
</tr>
<tr>
<td>2010</td>
<td>Winkle et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×3 6秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>変化なし</td>
</tr>
<tr>
<td></td>
<td>Moleacek et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>20秒(×7 7秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>ベンチプレス1RM</td>
</tr>
<tr>
<td></td>
<td>Sekir et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>20秒(×2 6秒)</td>
<td>等速等長筋力試験</td>
<td>60度で9.7%</td>
</tr>
<tr>
<td></td>
<td>Evsevich et al.</td>
<td>SS</td>
<td>等速</td>
<td>30秒(×4 15.2秒)</td>
<td>等速等長筋力試験 - バレ</td>
<td>9.2%</td>
</tr>
<tr>
<td></td>
<td>Roell et al.</td>
<td>W-up+SS</td>
<td>等速</td>
<td>30秒(×3 4.6秒)</td>
<td>等速等長筋力試験</td>
<td>等速等長筋力試験</td>
</tr>
</tbody>
</table>

柯川中

Costa et al. | 伸 SS | 伸 SS | 伸 SS | 等速等長筋力試験 | 30秒(×4 19.8秒) | 等速等長筋力試験 | 60度で9.7% |

柯川中

Costa et al. | 伸 SS | 伸 SS | 伸 SS | 等速等長筋力試験 | 30秒(×4 17.5秒) | 等速等長筋力試験 | 60度で9.7% |

柯川中

Costa et al. | 伸 SS | 伸 SS | 伸 SS | 等速等長筋力試験 | 30秒(×4 35.5秒) | 等速等長筋力試験 | 60度で9.7% |
スタティックストレッキングの実施によって膝関節伸展および膝関節屈曲における1RMがそれぞれ81％および73％低下したことを示した。おそらく、この知見はじめてスタティックストレッキングによるパフォーマンスの低下を明確にしたものである。これ以降、現時点まで多くの研究によって筋機能に対するスタティックストレッキングの影響が検討されてきたが、筋機能の向上を明らかにした研究はほとんどなく、スタティックストレッキングによる上肢および下肢における筋機能の低下が多数報告されている（表1）。

2. スタティックストレッキングが醣酵的な能力に及ぼす影響

筋機能に比較し、パフォーマンスの低下を示した研究の割合は低いが、垂直跳び高および走タイムについてもスタティックストレッキングによるパフォーマンス低下が報告されている（表2）。一方で、醣酵的な能力についてはパフォーマンスの向上効果も確認されており、Mcmillan et al.が上肢、体幹および下肢におけるスタティックストレッキングに専門的なウォームアップを加えることにより20m走タイムが1.7％速くなったことを明らかにした。また、O’Conner et al.は下肢筋群のスタティックストレッキングによって全力自転車運動におけるパワーが5％向上したことを報告している。

3. スタティックストレッキングが持続的な能力に及ぼす影響

筋機能あるいは醣酵的な能力に比べれば、持続的な能力に関わるスタティックストレッキングの影響について検討した研究は少ないが、筋機能に対する研究同様、パフォーマンスの向上を示した研究はなく、パフォーマンスの低下の報告が散見される（表3）。もっとも新しい知見では、Esposite et al.が下肢筋群に対するスタティックストレッキングによって、比較的高い約85％のVO2max強度における自転車滞在運動の疲労量を考えた運動強度が26.4％短縮し、運動強度が4.1％低下したことを報告している。これまでは比較的低い強度（約65％-75％VO2max）における持続的な能力に及ぼす効果しか検討されてこなかったが（表3）、約85％VO2max強度は陸上競技における中長距離種目の強度にも近いことから、この結果は重要な知見と考えられる。

4. スタティックストレッキングによるパフォーマンス低下の要因

スタティックストレッキングによるパフォーマンスの低下を明らかにした研究のなかには、そのメカニズムについて探求したものもある。それら結果からメカニズムの有力な候補として挙げられているのが、力学的な（mechanical）変化および神経生理解学的な（neurological）変化である。

力学的な変化については、筋の弾性の強さ（stiffness）の減少により、筋の収縮力が低下したり、筋から骨への力の伝達効率が下がることが示唆されている。また、筋が伸張されることにより、筋の長さ-力関係あるいは速度-力関係に変化を来し、最大力発揮ができる適正な筋長を示さず収縮速度が変化し、筋出力が減少することもパフォーマンス低下の一因と考えられている。筋およ

び筋の弾性の低下については、超音波法、受動的トルク（passive torque）法、筋音図法（mechanomyography）により直接的に定量され、スタティックストレッキング後の筋力の低下とともに各々の変化が生じることから裏付けられている。他方、筋の長さ-力関係については、間節角度と筋力の関係からスタティックストレッキング後に最大筋力の出現する角度が変化する、ある。特定の間節角度における筋力が大きく低下すること、さらには筋の伸展-力関係については、等速性筋活動において速度特異的にスタティックストレッキング後の筋力低下が認められること、大等な負荷性（あるいは運動的外部抵抗：dynamic constant external resistance）における筋活動を用いた測定により同じ負荷において速度の低下が生じることなどが明らかとなっている。

一方、神経生理解学的な変化については、Cramer et al.により、1）自発性抑制（あるいは自己抑制、autogenic inhibition）、2）機械受容器（mechanoreceptor）および侵害受容器（nociceptor）からの求心性抑制（afferent inhibition）、3）疲労性の抑制（fatigue induced inhibition）、4）間節における圧受容器からのフィードバック抑制（joint pressure feedback）などが挙げられている。
<table>
<thead>
<tr>
<th>出版年</th>
<th>作者等</th>
<th>使用泳法</th>
<th>選手</th>
<th>選手群</th>
<th>伸展時間（秒）</th>
<th>振幅</th>
<th>年齢</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>Knudson et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>15秒×3（5分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Church et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>7秒×7（4分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cunningham et al.</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（5分）</td>
<td>SQJ高</td>
<td>VJ高</td>
<td>4.4秒</td>
</tr>
<tr>
<td></td>
<td>Young&Elliot</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>15秒×3（10分）</td>
<td>SQJ高</td>
<td>DJ高</td>
<td>6.9秒</td>
</tr>
<tr>
<td>2002</td>
<td>Ford et al.</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（6分）</td>
<td>SQJ高</td>
<td>VJ高</td>
<td>7.4秒</td>
</tr>
<tr>
<td></td>
<td>Young&Ehman</td>
<td>SS①</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（4分）</td>
<td>SQJ高</td>
<td>DJ高</td>
<td>7.1秒</td>
</tr>
<tr>
<td></td>
<td>McNeel&Sands</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（2分）</td>
<td>DJ高温変化なし</td>
<td>9.6秒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Koch et al.</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>15秒×7（8分）</td>
<td>SQJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siatras et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×2（4分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>3.8秒</td>
</tr>
<tr>
<td>2003</td>
<td>Power et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>45秒×6（10分）</td>
<td>SQJ高</td>
<td>DJ高</td>
<td>年齢変化なし</td>
</tr>
<tr>
<td></td>
<td>Fletcher&Jones</td>
<td>W+up+active SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（7秒）</td>
<td>VJ高</td>
<td>VJ高</td>
<td>1.5秒</td>
</tr>
<tr>
<td></td>
<td>Urick et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>15秒×3（12秒）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>年齢変化なし</td>
</tr>
<tr>
<td></td>
<td>Nelton et al.</td>
<td>W+up+int SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×4（16-20分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>1.3秒</td>
</tr>
<tr>
<td></td>
<td>Burkett et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（6分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wallmenn et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（15分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Guissard&Relies</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>1秒×1（6分）</td>
<td>SQJ高</td>
<td>VJ高</td>
<td>年齢変化なし</td>
</tr>
<tr>
<td></td>
<td>Bohm et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（2分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>5.7秒</td>
</tr>
<tr>
<td></td>
<td>O'Connor et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>10秒×2（10分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>5.7秒</td>
</tr>
<tr>
<td></td>
<td>Little&Williams</td>
<td>W+up+SS+T-W up</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（6分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>年齢変化なし</td>
</tr>
<tr>
<td></td>
<td>McMillen et al.</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（12分）</td>
<td>VJ高</td>
<td>DJ高</td>
<td>1.7秒</td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>W+up+1分 SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（1分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>W+up+2分 SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（1分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（15分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（1分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dunstan&Woodfield</td>
<td>SS</td>
<td>選手</td>
<td>選手群</td>
<td>10秒×2（5分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bradley et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×4（1分）</td>
<td>SQJ高</td>
<td>VJ高</td>
<td>年齢変化なし</td>
</tr>
<tr>
<td></td>
<td>Brandenburg et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（9分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>Behm&Blache</td>
<td>W+up+100% SS①</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×4（20分）</td>
<td>SQJ高</td>
<td>VJ高</td>
<td>2.3秒</td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>W+up+50% SS②</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（2分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vetter</td>
<td>W+up+SS①</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（8分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Winchester et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（1分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rollins&Scheuermann</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（8分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wooten&Hulme</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（3分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Torres et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>15秒×2（3分）</td>
<td>MB高温変化なし</td>
<td>2.3秒</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sayers et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（1分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Samuel et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×1（9分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Araceli</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>20秒×1（3分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Allison et al.</td>
<td>W+up+SS</td>
<td>選手</td>
<td>選手群</td>
<td>30秒×3（3分）</td>
<td>VJ高</td>
<td>年齢変化なし</td>
<td></td>
</tr>
</tbody>
</table>

表2
スタディックストレッチングが胸板を可能に及ぼす影響について検討した研究。VJ=垂直跳び、SQJ=スクワットジャンプ、DJ=ドロップジャンプ、SJ=立ち幅跳び、MB=メディシンボール。
<table>
<thead>
<tr>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pearce et al.</td>
<td>W-up + SS</td>
<td>SS + W-up</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
<tr>
<td>W-up + SS</td>
<td>SS + W-up</td>
<td>SS</td>
</tr>
</tbody>
</table>

表3

<table>
<thead>
<tr>
<th>年代</th>
<th>伸肌反射トレーニングが持久的な能力に及ぼす影響について検討した研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>Hayes & Walker</td>
</tr>
<tr>
<td>2008</td>
<td>Allison et al.</td>
</tr>
<tr>
<td>2010</td>
<td>Samogin Lopes et al.</td>
</tr>
<tr>
<td>2011</td>
<td>Wilson et al.</td>
</tr>
<tr>
<td>2011</td>
<td>Mogook et al.</td>
</tr>
<tr>
<td>2011</td>
<td>Espósito et al.</td>
</tr>
</tbody>
</table>

inhibition), 5) 伸張反射による抑制 (stretch reflex inhibition), 高次中枢の疲労性の抑制 (supraspinal fatigue-induced inhibition) などがパフォーマンスの低下に関連していることが示唆されている。これは筋電図法^{14, 26, 33, 52, 64, 77, 79, 107, 123}により、随意筋活動中に電気刺激を入れ不随意筋活動を起こさせる方法 (interpolated twitch technique)^{14, 52, 100}によって導出された筋活動水準の低下と筋力あるいは垂直跳び高の低下が同時に起こることから説明がなされている。
5. スタティックストレッチングの効果を検討した研究の問題点とそれらを解決するために行われた研究

1) ひとつの筋群に対する伸張時間について

上述の通り、スタティックストレッチングによる各種パフォーマンスの低下を報告した研究が多いが、初期の研究とひとつの筋群に対する伸張時間が長い傾向にある。長いものでは60分に達するものもある（表1から表3）。スポーツ現場におけるスタティックストレッチングのひとつの筋群に対する伸張時間については、20秒以下を用いる場合の割合が73％と、20秒より長いストレッチングを用いる割合を大きく上回ったとした報告があるが、平均延長時間は20秒以下であることが多くの報告されている。この報告はスポーツ現場での指摘を受け、近年ではスポーツ現場で利用されているのような伸張時間のスタティックストレッチングを用いた研究も行われるようにになってきており、なかには伸張時間について幾つかの条件を設定し、その影響を比較検討した研究もある。

例えば、Knudson and Noiffalは筋力にかかわる前腕筋群に10秒から100秒まで10秒刻みでスタティックストレッチングを行った後に握力を測定し、40秒以上で握力が低下したことを報告している。また、Ogura et al.は腕関節筋群を対象に60秒のスタティックストレッチングを実施した場合では等尺性腕関節屈筋筋力が低下したもの、30秒では低下しなかったことを報告している。一方で、Sitras et al.は腕関節伸筋群に対する10、20、30および60秒のスタティックストレッチングを実施した場合において等尺性および60、180秒/分の等速性短縮性腕関節伸筋トルクに及ぼす影響を比較し、30および60秒ではトルクの低下がみられたものの、20秒以下ではトルクの低下は認められなかったことを報告している。また、Winchester et al.は腕関節屈曲群を対象に30秒のスタティックストレッチングを1セット実施した場合でも腕関節屈曲における1RMが低下し、セット数を2セットから6セットへと増やすることで1RMが増減したことを報告している。

ここで重要のは、スタティックストレッチングによるパフォーマンスの低下の要因と考えられている力学的な変化あるいは神経生理学的な変化はそれぞれ45秒あるいは30秒のスタティックストレッチング中には生じることが明らかになっているものの、ストレッチング直後に各々の変化が消失することが報告されていることである。つまり、メカニズムから考えれば、ひとつの筋群に対するスタティックストレッチングの伸張時間が30秒ではパフォーマンスを低下させる可能性は低いと考える。しかしながら、表1および表2におけるひとつの筋群に対する伸張時間（伸張時間×セット数）をもとに、30秒未満、30秒および30秒より長い場合のようにに3条件に分類し、各々がどれかのパフォーマンスを低下させた割合を算出すると、30秒未満では4/13（30.7％）、30秒では11/19（57.9％）、30秒より長い場合では79/122（64.8％）となり、30秒の伸張時間を用いた検討においても半数以上がパフォーマンスを低下させたことを示していることになる。したがって、このような結果が示されている以上、我々はより良いパフォーマンス発揮のために例えば30秒の伸張時間であってもスタティックストレッチングを利用することを推奨することはできない。同様の見解はBehm and Chauauichiの最近のレビューでも述べられており、統計処理により示されてきたパフォーマンスの低下を引き起こすスタティックストレッチングが伸張時間は90秒以上であったが、ウォームアップにおける伸張時間については実際にスポーツ現場で用いられている時間も考慮し、30秒以下を推奨している。一方で、Kay and Blazevichは、45秒以下の伸張時間を推奨している。

2) スタティックストレッチング後に専門的なウォームアップを加えることについて

スポーツ現場では一般にストレッチングの後にそれぞれの競技に特化した専門的なウォームアップを取り入れている。しかしながら、先行研究の多くはスタティックストレッチング直後にあるいは休息をおいて専門的なウォームアップを取り入れずにパフォーマンスの評価をしている（表1から表3）。一方、スタティックストレッチング後にウォームアップを取り入れた手順を採用した研究では、スタティックストレッチングによるパフォーマンスの低下がウォームアップを行っても残存した知見もある。低下的影響がウォームアップの効果によって相殺したものもある。さらには低下の影響がウォームアップの効果が上回り、パフォーマンスを改善させた上述のMcMillan et al.あるいはLittle and Williamsののような結果がある。これらの相違には前
6. スタティックストレッチングがパフォーマンスに及ぼす影響のまとめ

筋機能、瞬発的な能力および持久的な能力の他に、反応時2,6,12,15、筋持久力24,30、およびバランス能力27,31などの要素に対するパフォーマンスの影響を検討されており、このうち反応時間および筋持久力についてはスタティックストレッチングによって低下したことを示した研究5,12,30がある一方、バランス能力については改善効果が認められている25,60。しかしながら、これらの実験結果は一般的なスポーツパフォーマンスにおいてどのように影響するかを示す能力においてはより明確な影響が示されていない。このことから、スタティックストレッチングがスポーツパフォーマンスの改善効果を明らかにする研究はまだ不足36に限られている。このことから、スタティックストレッチングがパフォーマンスを強く影響するかどうかは今後の研究に期待したいと考えられる。

B. パラティシックストレッチングがパフォーマンスに及ぼす影響

パラティシックストレッチングは反応時間を短縮することができる。これは筋緊張を徐々に増加させることで、筋活動が抑制され、筋緊張が低減し、パフォーマンスが向上すると思われる。パラティシックストレッチングがパフォーマンスに及ぼす影響については、Nelson and Kokkonenは反応時、筋持久力、およびバランス能力の改善効果を示した。ただし、これらの実験結果は一般的なパフォーマンスにおいては明確な影響を示さなかった。

パラティシックストレッチングがパフォーマンスに及ぼす影響についての詳細な研究はさらに必要である。
レッティングがパフォーマンスに及ぼす影響

PNFを用いたストレッチングがパフォーマンスに及ぼす影響についても、筋機能および関節的な能力に対する検討が行われ、その半数を超える研究でパフォーマンスの低下が確認されている（表5）。Marek et al.77は膝関節伸筋群におけるPNFを用いたストレッチング（アイリードリラックス）によって、60度/秒および300度/秒における等速性伸展性膝関節伸展トルクおよびパワーがそれぞれ（2つの速度の平均で）2.8%および3.2%低下し、その程度は同筋群に対しスタティックストレッチングを実施した場合と変わらなかったことを示した。さらに彼らは膝関節伸展時の大腿四頭筋群における筋電図振幅を測定し、その減少を確認することで、PNFを用いたストレッチングについても神経生理解学的なメカニズムがパフォーマンス低下に関与していることを示唆した。

一方、興味深い知見として、Church et al.24はウォーームアップのみの条件およびウォームアップに膝関節伸筋群および膝関節屈筋群にスティックストレッチングを取り入れた条件に比べ、同筋群にPNFを用いたストレッチングを取り入れた条件で垂直走力が低値を示すことを報告した。すなわち、スタティックストレッチングでは確認された脳発的可能の低下がPNFを用いたストレッチングによって認められたのである。この他にPNFを用いたストレッチングがスタティックストレッチングよりも垂直走力の高い25あるいは筋持力の向上を大きく低下させることも明らかにされている。もともとPNFを用いたストレッチングはスタティックストレッチングあるいはパリストティックストレッチングにより柔軟性の改善効果が高いとされ、その効果はスタティックストレッチングを用いた自発性抑圧ならびに相対性抑制（reciprocal inhibition）の影響に起因するものと考えられる。つまり、理論通りにPNFを用いたストレッチングが大きな自発性抑制を引き起こすのであれば、スタティックストレッチングよりもパフォーマンスを低下させてもおかしくないのかもしれない。何れにせよ、PNFを用いたストレッチングについては、スタティックストレッチングあるいはパリストティックストレッチング同様、パフォーマンスを改善させた報告はなく、ウォームアップにおけるより良いパフォーマンス発揮のためのストレッチングとして重視することはできない。

表5

PNFを用いたストレッチングがパフォーマンスに及ぼす影響について検討した研究。VJ＝垂直跳び、SQJ＝スクワットジャンプ、DJ＝ドロップジャンプ。
D. ダイナミック（動的）ストレッチングがパフォーマンスに及ぼす影響

ダイナミックストレッチングはターゲットとなる筋群の抵抗筋群を意識的に収縮させ、関節の伸展および屈曲、あるいは回旋等を行うことでターゲットとなる筋群において相関性抑制を生じさせ、筋および腱を伸張させる方法である。また、実際のスポーツや身体活動に含まれる動作をシミュレートして意識的に行うことでその動作に関わる動的柔軟性（動きの滑らかさあるいは素早さ）を改善させる方法である。このダイナミックストレッチングについては筋機能、瞬発的な能力および持久的な能力に及ぼす影響が検討されているが、今までの3つの手法とは異なり、ダイナミックストレッチングによる筋機能（主にパワー）、跳躍能力、走タイムおよび投げ距離などの各種瞬発的な能力の向上が確認されている（表6）。さらに持続すべき、ダイナミックストレッチングによるパフォーマンス改善効果が認められなかったという報告もあるものの、他のストレッチングの影響で確認されたようなパフォーマンスの低下を示した研究が皆無である。一方、ダイナミックストレッチングが筋力に及ぼす影響については、5篇31,51,62,97,107中2篇97,107が筋力を向上させたことを示したものの向上の瞬発的能力に比べれば向上効果を報告した研究の割合は低い。また、持久的な能力に対するダイナミックストレッチングの効果についてはただひとつの研究42において検討されているののみで、下肢筋群に対するダイナミックストレッチングを実施しても約75%VO_{max}の強度における走経済性は改善しなかったことが示されている。したがって、ダイナミックストレッチングが筋力あるいは持久的な能力に及ぼす影響については現在のところ検討数が少ないこともあり、結論を出すのは時期尚早であろう。以上のことから、瞬発的な能力が必要とされるスポーツや身体活動前のウォームアップにおいては、ダイナミックストレッチングがより良いパフォーマンス発揮のために有効であると言える。

また、最近ではダイナミックストレッチングにおける適切な方法についての検討も行われるようにになってきた。Fletcher40は下肢筋群における90回/分の低速および100回/分の高速のダイナミックストレッチングを用いて垂直跳び及び最大を及ぼす影響を比較し、高速なダイナミックストレッチングがよりパフォーマンス向上に有効であったことを明らかにしている。また、体幹筋屈筋を対象に10回から50回まで10回刻みでダイナミックストレッチングを実施した後に300度/秒における等速性体幹筋屈曲トルクを測定し、20回実施した場合でトルクがもっとも高値を示したことを明らかにした報告もある54。加えて、最新の研究105では、ダイナミックストレッチング後における垂直跳びのピークパフォーマンスはダイナミックストレッチング後5.3分に出現したことも明らかにされており、運動前前にダイナミックストレッチングを実施すべきタイミングも示唆できるようになってきた。

一方、ダイナミックストレッチングがパフォーマンスを向上させるメカニズムについては明確になっているとは言い難いが、身体を動かしながら実施するため体幹を上昇させることや予め実際の運動で利用される筋群を活動させることから当該筋群の活動水準を高める、いわゆる活動後増強（postactivation potentiation: PAP）が生じること他、動的な柔軟性が高まることなどが関与すると推察されている。体温については、Fletcher and Monte-Colombo23がダイナミックストレッチングの実施により鼓膜温が0.23度上昇し、ウォームアップのみを実施した場合の上昇も0.18度高かったことを報告している。また、筋の活動水準については、ダイナミックストレッチングを実施した筋におけるパフォーマンス発揮時の筋電図活動水準の亢進が確認されている67,51,62,64,107。さらに、動的な柔軟性に関しては、ダイナミックストレッチング後にキック動作における角度が向上したことが報告されている3。

E. スタティックストレッチングとダイナミックス
トレッチングを組み合わせた手順の効果

スポーツ現場ではスタティックストレッチングとダイナミックストレッチングを併用することも多い。これはスタティックストレッチングに基本的な柔軟性の獲得やコンディションチェックの目的があるからである。実際には、筋肉や筋繊維の伸張あるいは抑制と呼ばれる要因がパフォーマンスに及ぼす影響について検討されている（表7）。ただし、スタティックストレッチング後にダイナミックストレッチングを行った場合の影響についても、スタティックストレッチングのひとつと筋群への伸張時
<table>
<thead>
<tr>
<th>出版年</th>
<th>著者</th>
<th>体位</th>
<th>副辞</th>
<th>伸肘時間（秒）</th>
<th>拳種</th>
<th>速度</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>Sia,tras et al.</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>3秒×7 (4分)</td>
<td>20m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2004</td>
<td>Fleisher & Jones</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>3秒×7 (4分)</td>
<td>20m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2005</td>
<td>Fajgenbaum et al.</td>
<td>DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>10秒×3 (15分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2006</td>
<td>Yamaguchi & Ishii</td>
<td>DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>10秒×3 (15分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2007</td>
<td>Papadopoulos et al.</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>10秒×3 (15分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2008</td>
<td>Fajgenbaum et al.</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>10秒×3 (15分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2009</td>
<td>Little & Williams</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>8秒×3 (4分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
<tr>
<td>2010</td>
<td>Litt & Williams</td>
<td>W-up+DS</td>
<td>伸株,伸膝,足底屈,足尖屈,足指曲</td>
<td>8秒×3 (4分)</td>
<td>10m 正時度</td>
<td>定着化</td>
</tr>
</tbody>
</table>

表6 ダイナミックストレッチングがパフォーマンスに及ぼす影響について検討した研究。VJ＝垂直跳び、MB＝メディシンボール、DJ＝ドロップジャンプ、SQJ＝スクワッドジャンプ、PK＝ペナルティキック。
表7

スタティックストレッキングとダイナミックストレッキングを組み合わせた手法がパフォーマンスに及ぼす影響について検討した研究、VJ＝垂直跳び、MB＝メディシンボール、PK＝ペナルティック。

<table>
<thead>
<tr>
<th>出版年</th>
<th>著者</th>
<th>条件</th>
<th>伸縮時間（注）</th>
<th>指標</th>
<th>結果</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>Faigenbaum et al.</td>
<td>W-up+SS+7DS①</td>
<td>20秒×2（7分）</td>
<td>VJ高</td>
<td>50cm走タイム</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W-up+DS②</td>
<td>20秒×2（7分）</td>
<td>VJ高</td>
<td>50cm走タイム</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W-up+SS③</td>
<td>20秒×2（7分）</td>
<td>VJ高</td>
<td>50cm走タイム</td>
</tr>
<tr>
<td></td>
<td></td>
<td>W-up+7DS④</td>
<td>20秒×2（7分）</td>
<td>VJ高</td>
<td>50cm走タイム</td>
</tr>
</tbody>
</table>

間がパフォーマンスへの影響を左右するようである、30秒よりも長いものはダイナミックストレッキングによるパフォーマンス改善効果をスタティックストレッキングが相殺してしまう傾向にあるが、一方で、30秒のスタティックストレッキングを用いた研究では、ダイナミックストレッキングによるパフォーマンス向上効果を相殺しなかった知見が数多く見られる。
た研究と定的な研究が存在する。現状、研究の数に限りがあるため、明確な示唆はできないが、やはりスタティックストレッチングとダイナミックストレッチングを併用する場合においてもスタティックストレッチングの必要性が示唆される。しかしながら、ダイナミックストレッチングによって膝の装着性が高まったことが現象論として示されている。他の研究において、膝の装着性が高まったため、膝の装着性を高めることが提案されている。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。

II. まとめ

以上、各種ストレッチングがパフォーマンスに及ぼす影響について述べてきたが、現時点においてウォームアップにおけるより良いパフォーマンス発揮のために有効なストレッチングの手法を挙げるとするならば、膝の装着性が発揮される運動においてダイナミックストレッチングの利用が有効であると捉えられるだろう。しかしながら、ダイナミックストレッチングによって膝の装着性が高まったことが現象論として示されているに過ぎず、ダイナミックストレッチングの適切な手法が明確になっているわけではない。したがって、膝の装着性の高率別あるいは身体部位別の適切なダイナミックストレッチングの方法（速度、頻度、回数（時間）、効果の持続時間など）を明らかにしなければならない。また、上記の通り、膝の装着性は膝の装着性に対するダイナミックストレッチングの効果については検討の余地が残っている。膝の装着性の高率別あるいは膝の装着性を高めるような手法についてもさらに検証しなければならない。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。したがって、膝の装着性を高めるための一つの方法は、膝の装着性を高める方法を提案することである。

文献

104) Samuel, M. N., W. R. Holcomb, M. A. Guadagnoli, M. D.

