
CLASSIFICATION OF CASI-3 HYPERSPECTRAL IMAGE BY SUBSPACE 

METHOD 

 

Buho Hoshino
1
, Hasi Bagan

2
, Akihiro Nakazawa

3
, Masami Kaneko

1
, Masaki Kawai

4
, and Tetuo Yabuki

1
 

 

1
 Department of Biosphere and Environmental Sciences, Rakuno Gakuen University,  

Bunkyoudai Midorimachi 582, Ebetsu city, Hokkaido, 069-8501, Japan. 

aosier@rakuno.ac.jp; kaneko@rakuno.ac.jp; Yabuki@rakuno.ac.jp 

 
2 
Center for Global Environmental Research, National Institute for Environmental Studies,  

16-2 Onogawa, Tsukuba-city, Ibaraki, 305-8506, Japan. 

 hasi.bagan@nies.go.jp 

3
 Asia Air Survey Co. Ltd., Kanagawa Prefecture 215-0004, Japan.  

aki.nakazawa@ajiko.co.jp
 

4 
Earth Remote Sensing Data Analysis Center, Tokyo, 104-0054, Japan.  

kawai@ersdac.or.jp 

 

Abstract―This study presents a supervised subspace 

learning classification method which can be applied 

directly to the original set of spectral bands of 

hyperspectral data for land cover classification purpose. 

The CLAss-Featuring Information Compression 

(CLAFIC) method is used to generate the appropriate 

feature subspace for each class on the training data set 

by Karhunen-Loève transform (also known as the 

principal component analysis). Then, using the 

iterative learning technology of averaged learning 

subspace methods (ALSM) to rotate the subspaces 

slowly for optimizes the subspaces to get better 

classification accuracy. We carried out experiments 

with 68 spectral bands Compact Airborne 

Spectrographic Imager-3 (CASI-3) data set. 

Experimental results show that Subspace method is a 

valid and effective alternative to other pattern 

recognition approaches for the mapping grass species 

and monitoring grass health using hyperspectral 

remote sensing data. Moreover, it is worth noting that 

the ALSMs are easily applied (i.e. they only request to 

set two parameters and can be directly applied to 

hyperspectral data) and they can entirely identify the 

training samples in a finite number of steps. 
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I. INTRODUCTION 

 

Hyperspectral data provides detailed spectral 

information about ground cover classes than traditional 

multispectral sensors. However, in the supervised 

classification, the curse of dimensionality (also known 

as “Hughes effect”) can be observed that occurs when 

the dimensionality of the data is quite high while at the 

same time there is a limited numbers of training 

samples available [1]. The recent developed subspace 

methods have been used to solve remote sensing 

image classification problems and have shown 

potential for efficient classification of high 

dimensional remote sensing data classification [2]. 

Subspace methods reduce data dimensionality by 

incorporating feature extraction into the classification 

process. The subspace methods using the 

transformation algorithms, which project the 

high-dimensional data onto lower dimension feature 

subspace that preserves most of the information that 

allows for the separation of classes, to overcoming the 

curse of dimensionality. In this study, we adopt the 

subspace classification method on the Compact 

Airborne Spectrographic Imager-3 (CASI-3) 



Hyperspectral data to identify different grass species 

and monitoring grass health. 

 

II. SUBSPACE METHODS 

 

The subspace method is supervised classification 

method. In this method, each pixel is represented in 

terms of n features or measurements and is viewed as a 

point in an n-dimensional space. In the subspace 

methods, the primary model for a class is a subspace. 

Each class is represented by a subspace spanned by a 

group of basis vectors, and the classification criterion 

for input pattern is its distance from the class subspace. 

We assume that a hyperspectral data of a given site is 

available, containing n bands, that implicit pixels were 

n-dimensional vector. And assume the user defined 

classes of 
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 appears. A set of 

labeled pixels for all such classes should also be 

available, divided into a training data set and a test data 

set. The objective is to establish subspaces in the 

feature space which separate samples belonging to 

different classes. The effectiveness of the subspace 

space is determined by how well samples from 

different classes can be separated. 

The basic Subspace method is called 

class-featuring information compression (CLAFIC) [3], 

the procedure of which is as follows. 

Let n be the number of input feature dimension, 

which is equal to the number of bands; let k,i (1  i  r, 

1 k  c) be the basis vectors of the subspace of class 

( )k which are computed from class training samples 

by QR eigenvalue and eigenvector solve algorithms; 

here r denote the subspace dimension and c denote the 

number of classes. The dimensionalities of class 

subspaces are decided in the CLAFIC stage and then 

are kept constant during the learning process. The 

calculation of projection length of pixel x in subspace 

of class 
( )k is given by 
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After compute the projection length between the 

pixel x and each subspace, then label pixel x into the 

classes that have the largest projection length. 

The misclassifications occur in CLAFIC is mainly 

due to overlap of class subspaces. To separate 

subspace from each other, averaged learning subspace 

methods (ALSM) have been proposed [3] [4]. In 

ASLM, the class subspaces are slowly rotated to 

reduce the overlap between subspaces. The ALSM is 

described as follows: 

At the iteration t, the conditional correlation matrix 

is computed by 

 ( , ) ( ) ( ),i j T i j

t

x

P xx x x        (2) 

symbol denotes the training sample x belongs to 

class 
( )i that has been misclassified into class 

( )j . 

Once the conditional correlation matrix was 

generated, the correlation matrix for class 
( )i are 

updated as follows: 
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where  and  are learning parameters both usually 

have small positive constant values. Then, calculate 

the eigenvalues and eigenvectors of ( )i

tP  to

 

generate 

new subspace of class ( )i  [5]. The iterations will end 

when either the entire training data are fully 

recognized or the maximum number of iterations has 

been reached. Selecting both the subspace dimension 

and learning parameters is important in the subspace 

training phase. Usually, when choose the subspace 

dimensions for each class as the same value and set the 

two learning parameters equal to each other in ALSM, 

the recognition accuracy can reach higher [2]. 

 

III. EXPERIMENTAL RESULTS 

 

A. Study Area and Data Set 

The CASI-3 Hyperspectral data acquired on July 

30, 2008 during 10:36~10:39 a.m. Tokyo standard 

time for a study site at Field Production Science Center 

(University Campus Farm), Rakuno Gakuen 



University, Japan (Fig. 1). Table 1 presents the training 

and test data set used for classification. 

 

Fig. 1  Location of the study area. The right side image shows the 

full scene CASI-3 data set (RGB =central wavelength: 636.73, 

549.81 and 433.12 nm).  

TABLE I  

DESCRIPTION OF LAND-COVER CLASSES AND NUMBER 

OF TRAINING AND TEST SAMPLES IN THE 

EXPERIMENTS 

Class Training samples Test samples 

C1. Water 563 336 

C2. Woods 881 560 

C3. Roofs 629 390 

C4. Grass01 566 404 

C5. Grass02 458 295 

C6. Grass03 741 302 

C7.Grass04 493 388 

C8. Grass05 439 333 

C9. Grass06 568 380 

C10.Grass07 469 287 

C11. Grass08 365 274 

C12. Bare 1026 706 

C13. Road 704 466 

C14. Grass09 1216 707 

C15. Grass10 338 162 

Total 9456 5990 

The CASI-3 was operated in hyperspectral mode, 

with a ground spatial resolution of 1.5 m. The spectral 

configuration of the sensor was set to consist of 68 

spectral channels each about 10 nm in width spanning 

the spectrum from 403 to 1058 nm.  

B. Classification result 

To assess the training effectiveness in each iteration 

step, we classify the test samples by currently generating 

subspaces according to Formula (1). Figure 2 shows the 

behaviors of the training and test accuracies by training 

iteration. Figure 3 shows the classification results. 
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Fig. 2  Plots of the accuracy rate vs. the number of iterations for the 

training and test samples.   
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Fig. 3  Classification map obtained with the fixed subspace 

method. The subspace dimension was 7 and both learning 

parameters were 0.25. 

The test samples were not joined to the training 

process, but were used only to assess the classification 

accuracy. Here we used the fixed dimension of 7 with 

both learning parameters set to 0.25. The classification 

accuracy on test dataset was 91.2% when training was 

over (at 122), however the best test data accuracy of 

91.6% was reached at traitraining iteration was 37. As 

shown in Fig. 2, the accuracy of the training and testing 

data set increases steadily with the learning iteration. 

When the training data is convergent of 100% accuracy, 

the classification accuracy of test set almost increases or 



very close to the best accuracy. Table 2 presents the 

corresponding confusion matrix [6]. 

 

TABLEⅡ 

CONFUSION MATRIX FOR THE CLASSIFICATIONS PERFORMED 

BY SUBSPACE METHOD WITH THE TEST DATA SET. 

Class 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 User 

(%) 

1 327 1 0 0 0 0 0 0 0 0 0 2 0 0 0 99.1 

2 5 508 0 0 0 0 0 0 0 0 0 0 0 13 0 96.6 

3 1 0 284 0 0 0 0 0 0 0 0 23 43 0 0 80.9 

4 0 0 0 404 0 0 0 0 0 0 0 0 0 0 0 100 

5 0 3 0 0 292 2 0 0 0 0 0 0 0 0 6 96.4 

6 0 0 0 0 2 295 0 0 0 0 0 0 0 0 1 99.0 

7 0 3 0 0 1 4 387 0 0 0 0 1 0 0 0 97.7 

8 0 0 0 0 0 0 0 323 0 0 0 0 0 0 2 99.4 

9 3 0 0 0 0 0 1 0 319 3 0 0 0 0 0 97.9 

10 0 2 0 0 0 0 0 0 0 284 0 1 0 0 0 99.0 

11 0 0 0 0 0 0 0 0 0 0 274 31 0 0 0 89.8 

12 0 0 61 0 0 0 0 10 0 0 0 600 92 0 0 78.6 

13 0 0 45 0 0 0 0 0 0 0 0 26 331 0 0 82.3 

14 0 38 0 0 0 1 0 0 61 0 0 22 0 694 10 84. 

15 0 5 0 0 0 0 0 0 0 0 0 0 0 0 143 96.6 

Prod. 

(%) 

97.3 90.7 72.8 100 98.98 97.68 99.74 97 83.95 99.0 100 85.0 71.0 98.2 88.3  

Overall Accuracy: (5465/5990) 91.2354%;  Kappa Coefficient = 0.9050 

  

IV. CONCLUSION 

 

We have investigated a subspace methods based on a 

combination of a normalization techniques and QR 

method on CASI-3 data with 68 bands. The CASI-3 

hyperspectral imaging was shown to be a considerable 

technique to identify individual grass species and 

monitoring grass health, provide new indicators of 

spectral properties at leaf and canopy scales and 

estimate aboveground grass productivity. Our 

experiments performed by the subspace method also 

indicate that subspace method is a simple method to 

apply; it possesses high-speed convergence and can 

completely identify the training samples. In future 

studies, more analysis needs to be done to identify 

different grass species and monitoring grass health, 

and the potential of other types hyperspectral data and 

the suitability of the method described here will be 

investigated.  
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