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ABSTRACT

High relatedness in the US Holstein breed can be 
attributed to the increased rate of inbreeding that re-
sulted from strong selection and the extensive use of a 
few bulls via reproductive biotechnology. The objec-
tives of this study were to determine whether cluster-
ing could separate selected candidates into genetically 
different groups and whether such clustering could 
reduce the expected inbreeding of the next generation. 
A genomic relationship matrix composed of 1,145 sires 
with the most registered progeny in the breed born af-
ter 1985 was used for principal component analysis and 
k-means clustering. The 5 clusters reduced the variance 
by 25% and contained 171 (C1), 252 (C2), 200 (C3), 
244 (C4), and 278 (C5) animals, respectively. The 2 
most predominant families were C1 and C2, while C4 
contained the most international animals. On average, 
C1 and C5 contained older animals; the average birth 
year per cluster was 1988 (C1), 1996 (C2 and C3), 1999 
(C4), and 1990 (C5). Increasing to 10 clusters allowed 
the separation of the predominant sons. Statistically 
significant differences were observed for indices (net 
merit index, cheese merit index, and fluid merit index), 
daughter pregnancy rate, and production traits (milk, 
fat, and protein), with older clusters having lower merit 
for production but higher for reproduction. K-means 
clustering was also used for 20,099 animals considered 
as selection candidates. Based on the reduction in vari-
ance achieved by clustering, 5 to 7 clusters were appro-
priate. The number of animals in each cluster was 3,577 
(C1), 3,073 (C2), 3,302 (C3), 5,931 (C4), and 4,216 
(C5). The expected inbreeding from within or across 
cluster mating was calculated using the complete pedi-
gree, assuming the mean inbreeding of animals born in 
the same year when parents are unknown. Generally, 
inbreeding was highest within cluster mating and lowest 
across cluster mating. Even when 10 clusters were used, 

one cluster always gave low inbreeding in all scenarios. 
This suggests that this cluster contains animals that 
differ from all other groups but still contains enough 
diversity within itself. Based on lower across cluster 
inbreeding, up to 7 clusters were appropriate. Statisti-
cally significant differences in genomic estimated breed-
ing values were found between clusters. The rankings of 
clusters for different traits were mostly the same except 
for reproduction and fat. Results show that diversity 
within the population exists and clustering of selection 
candidates can reduce the expected inbreeding of the 
next generations.
Key words: k-means, genetic diversity, principal 
component analysis

INTRODUCTION

The purebred dairy breed populations have under-
gone strong selection for similar traits. The wide use of 
AI has led to a substantial genetic improvement in pro-
duction of the US Holstein (Capper et al., 2009; Capper 
and Cady, 2020). However, the use of a relatively small 
number of bulls has increased the relatedness within 
the breed. By 2015, all AI bulls in North America could 
be traced back to only 2 bulls born in 1880 (Yue et 
al., 2015). In fact, (Makanjuola et al., 2020b) found an 
average inbreeding coefficient of 7.74% when estimated 
through traditional pedigree methods but between 15% 
and 31% when based on genomic information. The loss 
of genetic diversity caused by inbreeding has already 
led to inbreeding depression in both production and re-
production in dairy populations (Bjelland et al., 2013). 
This lack of variation can also hinder the ability of 
populations to adapt to change (Markert et al., 2010), 
which is a growing concern in the face of climate change 
and consumer preferences.

An anticipated advantage of genomic selection was 
to reduce the rate of inbreeding per generation by al-
lowing the accurate identification of the best animals 
instead of the best families (Daetwyler et al., 2007). 
While it appears that this has been successful in the 
American Angus (Lozada-Soto et al., 2021), the rate 
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of inbreeding in the North American Holstein has in-
creased considerably since the application of genomic 
selection. The annual increase in inbreeding was 0.11 
percentage points from 2000 to 2008 (before genomic 
selection) but increased to 0.36 percentage points from 
2013 to 2021 (CDCB, 2021). An increase in the rate of 
inbreeding after the implementation of genomic selec-
tion has also been observed outside the US, such as 
the French (Doublet et al., 2019) and Dutch-Flemish 
(Doekes et al., 2018) Holstein-Friesian.

Phenotypically similar animals can still be genetically 
diverse. Genetic evaluation has allowed the estimation 
of genetic merit, but even animals with identical breed-
ing values will still have different clusters of genes. 
Identifying distinct groups within the Holstein breed 
can aid the mating of animals with underlying genomic 
differences and avoid the breedwise fixation of alleles. 
Breeding less related animals leads to a decrease in the 
average relatedness in the population (Wellmann and 
Bennewitz, 2019). The objectives of this study were 
to identify specific sires that have contributed to dif-
ferences in the population, determine whether selected 
candidates can be clustered into genetically different 
groups, and establish whether this clustering can be 
used to reduce the expected inbreeding in the next 
generation.

MATERIALS AND METHODS

Data

Data were provided by the Council on Dairy Cattle 
Breeding (CDCB) and the Holstein Association USA; 
therefore, Animal Care and Use Committee approval 
was not required for this research. Genotypes were 
available for the US Holstein population up to 2014. 
The number of animals in the pedigree was 9,817,252, 
which contained 330,837 sires and 5,471,039 dams. 
The average progeny per sire was 29 with a maximum 
of 58,266 for sire Marshfield Elevation Tony (Mars). 
The phenotypic data contained type traits and to-
taled 10,067,745 records. After removal of unmapped 
and sex chromosomes, 58,990 SNP markers remained. 
Genotypes were available for 569,404 animals. Breeding 
values for net merit index (NMI), cheese merit index 
(CMI), fluid merit index (FMI), daughter pregnancy 
rate (DPR), milk yield, fat yield, and protein yield 
were available for a subset of animals.

Clustering of Sires

Family clustering within the breed was investigated 
using only sires of animals born after 1985. Of the 
2,000 sires with the most progeny born in 1986 or later, 

1,145 were genotyped. The number of progeny per 
sire ranged from 312 to 49,146 and the birth year of 
the sires ranged from 1962 to 2009. Six countries were 
represented based on the registration number, includ-
ing the US (988 animals), Canada (139), Germany (7), 
Italy (6), the Netherlands (3), and Great Britain (1). 
Animals with foreign registration numbers may include 
animals that were the result of embryo transfers of US 
animals, which means that they would genetically be 
American. The genomic relationship matrix (G) was 
obtained using the formula

	 G
ZZ

=
−( )
′

2 1p pi iΣ
,	

where Z is a matrix of SNP content centered around 
the current allele frequencies, and pi is the current al-
lele frequency of SNP i (VanRaden, 2008). Principal 
component analysis was performed on G to visualize 
potential clustering and identify those more distant 
from the majority. The first 3 principal components are 
presented in Figure 1. The animals falling within the 
extreme ends of the first 12 principal components were 
considered as potential key sires that contributed to 
genetic variation within this group of sires.

K-means clustering (Hartigan and Wong, 1979) with 
5 and 10 clusters was performed on G using the k-
means package in R. This is an iterative procedure that 
aims to minimize within-cluster sum of squares. This 
method can be sensitive to initial values, and therefore 
50 iterations were performed. K-means clustering was 
also performed on the pedigree matrix corresponding to 
these genotyped animals (A22). The relationships within 
A22 were obtained using the full pedigree information, 
thus all registered animals regardless of age or sex were 
accounted for. The 3 oldest animals as well as the 3 
with the most progeny in each cluster were considered 
key sires and are presented in Table 1. Figures 2 and 
3, respectively, show the distribution of birth year and 
proportion of animals per country within each cluster 
using k-means clustering on G with 5 clusters. Breed-
ing values were available for 1,125 animals. Analysis of 
variance and Tukey’s honest significant difference test 
determined significant differences between clusters.

Clustering Selected Candidates

A subset of animals was chosen to represent those 
that may have been selected from the available selec-
tion candidates at the time (~2014). A total of 3,902 
genotyped sires of animals born after 2010 with a 
minimum of 25 progeny were identified as male selected 
candidates in 2014. Among the females, 16,197 geno-
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Figure 1. The first 3 principal components (pc) based on the genomic relationship matrix (G) of 1,145 sires. Animals are color-coded ac-
cording to clusters (k-means with 5 clusters), country, or birth year groups (A, B, and C, respectively).

Table 1. The most important sires identified using different clustering methods on the 1,145 most popular sires of animals born after 19851

Cluster   PCA   K-means 5 (G)   K-means (A22)   K-means 10 (G)

1 Mark, Altagrand Mark, Mandingo, Tesk, 
Valiant

Mark, Mandingo, Tesk, Chief, 
Glendell, Conductor

Melvin, Mandingo, Tesk, 
Ivanhoe Chief

2 Bell, Elton, Bitzie, Celsius, 
Marshall, Elegant

Bell, Durham, Belltone Bell, Durham, Belltone, Jesse Bell, Mathie, Belltone, 
Cinnamon

3 Blackstar Blackstar, Emory, 
Integrity, Chairman

Blackstar, Emory, Integrity, 
Chairman, Ivanhoe Chief

Blackstar, Emory, Integrity, 
Wayne

4 Starbuck, Storm, Rudolph, 
Aerostar

Starbuck, Outside, 
Morty, Aerostar

Starbuck. Outside, Elevation, Mars, 
Elav Mars

Starbuck, Encore, Morty, 
Astronaut

5 Valiant, Leadman, Formation Ned Boy, Leadman, 
Cleitus, Tradition

Ned Boy, Levi, Enhancer, Bootmaker, 
Astronaut, Jet Stream

Ned Boy, Leadman, Cleitus, 
Bootmaker

6 Rotate, Melwood, 
Altamelwood

    Oman, Melwood, Wister, 
Glendell

7 Elevation, Tradition, Cleitus     Outside, Million, Shottle, 
Prelude

8       BW Marshall, Toystory, 
Altabellwood

9       Mark, Highlight, Roebuck, 
Chief

10       Durham, Emerson, Mr. 
Sam, Elton

1The clustering using principal components analysis (PCA) looked at the animals on the outer edges of the first 12 principal components, result-
ing in 7 groups. K-means clustering was used with 5 or 10 clusters based on genomic relationship matrix (G), and 5 clusters based on pedigree 
relationships (A22). The sires listed are the 3 sires with the most progeny in the cluster and the oldest (if different from the 3 with the most 
progeny).
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typed animals measured for type traits after 2012 were 
chosen as candidates. K-means clustering was applied 
to G using up to 10 clusters with the built-in k-means 
R package. This clustering method reduces the sum 
of squares between data points by calculating the sum 
based on the distance to the nearest cluster center. 
Adding more clusters reduces overall variance. The 
point where the reduction appears to reach a plateau 
is an estimate of the appropriate number of clusters. 
On our data, 5 to 7 clusters were appropriate based on 
Figure 4. We chose to use 5 clusters (C1, C2, C3, C4, 
and C5). The first 3 principal components using G are 
presented in Figure 5.

Hypothetical mating was performed within and 
across clusters of these selection candidates with the 
INBUPGf90 software package within the BLUPF90 
software suite (Misztal et al., 2014). The expected ped-
igree-based inbreeding of offspring was calculated for 
every possible mating between the sires of a cluster and 
the dams of each cluster. The complete available pedi-
gree information of the Holstein population was used 
in a recursive algorithm, assuming nonzero inbreeding 
for unknown parents (Aguilar and Misztal, 2008). The 
recursive algorithm makes use of the tabular method 

to obtain expected relationships based on parents. 
Animals must be sorted based on year of birth so that 
parents precede their progeny. The method to calculate 
inbreeding coefficient (Fx) for each animal x is Fx = 
0.5Rsd, where Rsd is the numerator relationship between 
the sire (s) and dam (d). The calculation is recursive 
and involves tracing the ancestors back and computing 
the relationship between parents. The mean inbreeding 
of animals born in the same year is used when parents 
are unknown. It is possible to calculate the expected 
inbreeding between a specific bull and cow in our study 
when the relationship between the parents is known.

The genetic merit of the bulls was compared across 
cluster using ANOVA. Breeding values for selection 
indices, DPR, and yield traits were available for most 
bulls.

RESULTS AND DISCUSSION

Clustering of Influential Sires

Clear clustering within the 1,145 sires was not ob-
served in the principal component analysis (PCA) 
plot (Figure 1). However, sires from Canada could be 
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Figure 2. The distribution of birth year within each cluster of the 1,145 most popular sires of animals born after 1985.
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observed in 1 plane. Animals further away from the 
center were older bulls, while younger bulls appeared 
in the center.

It has been found that the 2 most influential bulls 
to Holstein US sires were Round Oak Rag Apple El-
evation (Elevation) and Pawnee Farm Arlinda Chief 
(Chief). Up to 99% of AI bulls born after 2010 traced 
back to these animals (Yue et al., 2015; Dechow et al., 
2020). Three of the bulls that appear more distant in 
the PCA, namely Tomar Blackstar (Blackstar), SWD 
Valiant (Valiant), and Walkway Chief Mark (Mark), 
are key male descendants of Chief. Madawaska Aero-
star (Aerostar) is an important son of Hanoverhill 
Starbuck (Starbuck), who is the son of Elevation. The 
third most important bull identified by previous stud-
ies is Pennstate Ivanhoe Star (Ivanhoe Star), the sire 
of Carlin M. Ivanhoe Bell (Bell). Aerostar, along with 
others in its group, is a Canadian-born bull. As the 
families became more related to each other, distinct 
animals could not be observed clearly with more prin-
cipal components. Table 1 contains a summary of bulls 
identified as genetically more different compared with 
the majority based on the observation of the first 12 
principal components.

Cross-validation can be used to determine the useful-
ness of genomic prediction. Studies have shown that 

the accuracy obtained from cross-validation was lowest 
when using k-means as clustering (Saatchi et al., 2012; 
Boddhireddy et al., 2014; Baller et al., 2019). The accu-
racy of genomic predictions relies on the relationships 
between the training and target populations (Habier et 
al., 2010; Clark et al., 2012; Pszczola et al., 2012), which 
suggests that k-means clustering is successful at sepa-
rating groups that are more related to each other but 
less related to other clusters. The principal component 
plot in Figure 1 shows that animals in the same cluster 
are closer together. The number of animals per cluster 
based on the G-matrix was 171 (C1), 252 (C2), 200 
(C3), 244 (C4), and 278 (C5). The clustering method 
reduced variance by 25%. The number of animals based 
on the pedigree matrix was 125 (C1), 181 (C2), 263 
(C3), 270 (C4), and 306 (C5). While the clustering of 
many animals changed, the same influential sires were 
identified using genomic information or only pedigree 
information. These differences in cluster size based on 
G or A22 could be due to incomplete pedigrees, the 
difference between identity by state (IBS) and identity 
by descent (IBD), and the lack of clear separation of 
animals that are closely related based on either method. 
The pedigree relationships are based on expected rela-
tionships between animals using only recorded relatives 
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Figure 3. The proportion of sires from different countries in each 
cluster when the 1,145 most popular sires of animals born after 1985 
are used. The innermost circle is cluster 1, and the outermost is cluster 
5. CAN = Canada; DEU = Germany; GBR = Great Britain; HUN = 
Hungary; ITA = Italy; NLD = the Netherlands. Figure 4. The reduction in the sum of squares achieved with k-

means clustering as the number of clusters specified increases. The 
k-means clustering was based on the 20,099 selected candidates.



9815

Journal of Dairy Science Vol. 105 No. 12, 2022

(IBD). Incomplete pedigrees and Mendelian sampling 
impair the estimation of true relationships based on 
IBD. The genomic relationship matrix detects any 
similarities between animals (IBS) and is independent 
of the available pedigree information. Clustering based 
on k-means forces animals to be assigned to only 1 
specific cluster, which is a challenge when animals from 
different clusters share strong similarities.

The age distribution within each cluster is presented 
in Figure 2. It shows that C1 and C5 consisted of older 
bulls on average, compared with the rest, with the bull 
popularity in C1 peaking in 1987 (mean and median 
birth year) and C5 showing a more extended popularity 
period from 1985 to 2000 (with mean and median of 
1990). The smallest cluster was C1, which contained 
the key sires Mark and Valiant, who have Chief as 
the primary progenitor. The largest cluster was C5 
and contained Sweet Haven Tradition (Tradition), 
Rothrock Tradition Leadman (Leadman), and Bismay 
Tradition Cleitus (Cleitus) as key sires, representing 
multiple US breeding families. In C2, the periods of 
popularity peaked around 1985 and 2001 (mean of 
1996 and median of 1999). That cluster had Chairman 
and Blackstar as key sires, with Ivanhoe and No-Na-
Me Fond Matt (Fond Matt) as primary progenitors. 
Cluster 3 showed peak periods around 1990, 1995, and 
2004, while C4 showed peaks around 1999 and 2005. 
The proportion of animals born after 1999 in each clus-
ter was 6% (C1), 50% (C2), 31% (C3), 49% (C4), and 

16% (C5). The key sire of C3, Bell, was a carrier of 
complex vertebral malformation and bovine leukocyte 
adhesion deficiency. Although he was also popular in 
other countries, he was almost exclusively used in the 
United States. The key sires of C4 are Canadian-born 
Hanoverhill Starbuck (Starbuck), Comestar Outside 
(Outside), Aerostar, and Stouder Morty (Morty). As 
reflected in Figure 3, this was the most international 
group.

When the number of clusters was increased from 5 to 
10, the important sons of key sires were separated from 
C1, C3, and C4. A disadvantage of k-means cluster-
ing is the subjective choice of the number of clusters 
used. Because the total number of sires is 1,145, more 
clusters may become unreasonable. Animals will inevi-
tably be separated regardless of whether they should be 
considered different groups or not.

Trait Differences

Statistically significant differences (P < 0.05) were 
found between groups for all traits, but many pairwise 
comparisons showed no differences (Table 2). Apart 
from protein, C1 and C5 were not different and gener-
ally had the lowest values for indices and production 
traits but the highest for reproductive rate. These clus-
ters contained a larger number of older bulls. Historic 
bulls are expected to compare unfavorably to modern 
animals based on net merit and production traits (De 
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Figure 5. Principal component (pc) analyses plots for 3 dimensions showing the clustering results of the 20,099 selected candidates.
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Vries, 2017) due to the remarkable progress that has 
been made over generations of selection. Due to strong 
selection of production traits, unfavorable correlations 
with fitness and reproductive traits (Berry et al., 2014) 
have created challenges for the dairy industry. A re-
cent study aimed to reincorporate lost genetics from 
older bulls to improve diversity and fitness. The new 
progeny of these old bulls showed average, or better 
performance for DPR but below average for production 
traits (Dechow et al., 2020).

Clustering of Selected Candidates

Five clusters reduced the variance by 31%, while 7 
clusters reduced variance by 35%. Most comparisons 
for this study were based on 5 clusters. The number 
of animals in each cluster was 3,577 (C1), 3,073 (C2), 
3,302 (C3), 5,931 (C4), and 4,216 (C5). Each cluster 
contained females of 227 (C1), 296 (C2), 336 (C3), 894 
(C4), and 328 (C5) sires. Of these sires, 47%, 41%, 37%, 
37%, and 34% also appeared in the same cluster for C1, 

C2, C3, C4, and C5, respectively. The proportion of the 
females of each cluster that were sired by males in their 
own cluster was 85% (C1), 70% (C2), 64% (C3), 62% 
(C4), and 80% (C5). Some of these sires have daughters 
in more than one cluster. The proportion of daughters 
from sires in one cluster that are in other clusters are 
3% (C1), 19% (C2), 35% (C3), 28% (C4), and 28% 
(C5). Table 3 shows the bulls with the most daughters 
in its own cluster, along with the number of daughters 
in each other cluster. Ensenado Taboo Planet (Planet) 
and 2 of his sons have the most daughters in C1, which 
shows a strong association between Planet and C1. 
Braedale Goldwyn (Goldwyn) and his sons are associ-
ated with C2, while Shottle and his sons are associated 
with C3. Cluster 4 is not dominated by any particular 
sire, although Comestar Outside (Outside) is a mater-
nal grandsire of the bull with the most daughters in C4, 
Ronelee Toystory Domain (Domain), and a sire of the 
bull with the second most daughters, England-Ammon 
Million (Million). The 3 sires with the most progeny in 
C5 are all sons of O-bee Manfred Justice (Oman).

Steyn et al.: GENETIC CLUSTERS IN THE US HOLSTEIN BREED

Table 2. The average breeding values per cluster for the 1,145 most popular sires of animals born after 1985

Cluster

Trait1

NMI ($) CMI FMI DPR (%) Milk (kg) Fat (kg) Protein (kg)

C1 −484a −496a −458a 0.85a −503a −20a −18
C2 −289b −295b −278bc −0.36bc −222bc −10b −8a

C3 −358c −372c −329bd −0.09bd −264bd −15cd −11b

C4 −321bc −327bc −308cd −0.55cd −293cd −13bc −10ab

C5 −429a −438a −410a 0.64a −420a −18ad −15
a–dGroups with corresponding letters did not show statistically significant differences at P < 0.05.
1NMI = net merit index; CMI = cheese merit index; FMI = fluid milk index; DPR = daughter pregnancy rate.

Table 3. The sires within a cluster with the most daughters in its own cluster, along with the number of 
daughters in each other cluster1

Bull’s 
cluster   Bull name   Sire of bull   MGS of bull

Number of daughters in each cluster

C1 C2 C3 C4 C5

C1 Shamrock Planet2 Shottle 521 11 4 0 0
Observer Planet2 Oman 488 0 0 0 7
Planet2 Taboo Amel 369 0 0 0 0

C2 Goldwyn2 James Storm 0 310 0 0 0
GW Atwood Goldwyn2 Durham 0 274 0 0 2
Gold Chip Goldwyn2 Shottle 1 160 6 0 3

C3 Shottle2 Mtoto Aerostar 0 0 434 0 0
Beacan Shottle2 BW Marshall 7 6 134 1 14
Hill Shottle2 Boliver 3 2 103 2 2

C4 Domain Toystory Outside 12 38 101 249 39
Million Outside BW Marshall 1 19 48 123 4
Colt P-Red Lawn-Boy P-Red Bolton 4 20 28 104 6

C5 Altaiota Oman2 Juror 6 8 6 0 389
Man-O-Man Oman2 Altaaaron 0 0 1 0 268
Freddie Oman2 Die-Hard 11 0 0 0 260

1The sire and maternal grandsire (MGS) of each bull is included. 
2Animals that appear to characterize each specific cluster.
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Trait Differences

Table 4 shows the average breeding values for the 
males in each cluster. Pairwise differences were statisti-
cally significant for all indices, though many were not 
for DPR. Overall, C1 was better for all indices and 
traits except DPR and fat. For DPR, C5 was best along 
with C3. Cluster 3 tended to be intermediate for traits 
and indices. The poorest genetic merit overall tended 
to be C2, although DPR was not significantly different 
from C1 and fat was not significantly different from 
C4. Although C4 differed significantly for all indices 
compared with other clusters, most traits for C4 were 
not significantly different from at least 1 other cluster. 
Based on these results, the main line for reproduction 
and fat was C5, which ranked second-best for other 
traits and indices. Cluster 2 was the worst for all indi-
ces and traits.

Expected Inbreeding

Our clustering methods have the practical potential 
to manage diversity by mating animals across clusters. 
The expected inbreeding from random mating between 
all selected candidates is 0.121. Among the expected 
inbreeding when 5 clusters were used, 35% of the 20 
combinations across clusters resulted in inbreeding 
greater than 0.121 (maximum of 0.129), while only 1 
within cluster mating (C4 sires with C4 dams) was less 
(0.101). The other within cluster mating ranged from 
0.168 to 0.215. Figure 6 shows the distribution of ex-
pected inbreeding when mating sires of C1 with dams 
of each other cluster. The distribution for within cluster 
mating (C1 sires with C1 dams) was shifted toward the 
right and had a wider distribution. A similar pattern 
was observed for all other mating combinations except 
for C4. Figure 7 shows that the expected inbreeding 
for all combinations were lower with narrower distribu-
tions.

This lower within cluster inbreeding for C4 was unex-
pected because clustering is expected to group animals 

that more related to each other together. In our study, 
all average mating combinations with C4 gave low 
inbreeding. Across cluster mating scenarios with C4 
(whether sires or dams from C4) resulted in inbreeding 
ranging from 0.099 (C1 sires with C4 dams) to 0.108 
(C3 sires to C4 dams). The unexpected results from C4, 
the largest cluster, may suggest that the cluster was 
genetically further removed from the other clusters, but 
still contained enough genetic diversity to allow low 
inbreeding levels within the cluster. This also suggests 
that more than 5 clusters can be used for the sake of 
mating strategies. However, even when using up to 10 
clusters, one cluster always resulted in low inbreeding 
levels within and across cluster compared with all oth-
ers. This group may contain all remaining animals that 
do not fit into distinct groups. As shown in Table 4, 
C4 is not dominated by a specific sire since those with 
the most daughters in C4 also have more daughters in 
other clusters.

Increasing the number of clusters for mating purposes 
resulted in higher within cluster inbreeding levels (up 
to 0.266 with 9 clusters) and higher maximum across 
cluster inbreeding (up to 0.212 with 9 clusters). Using 
more than 7 clusters also resulted in more across cluster 
combinations with high inbreeding levels (over 0.157). 
Based on these results, up to 7 clusters could be reason-
able in this population.

Breeding programs need to consider inbreeding 
when making mating decisions. In particular, recent 
inbreeding is more detrimental than ancient inbreeding 
(Makanjuola et al., 2020b; Lozada-Soto et al., 2021). 
Our clustering method can successfully reduce the ex-
pected inbreeding of future generations compared with 
random mating. It is unknown how much difference this 
strategy can make on a genomic level since estimates 
reported here are based on pedigree information. Stud-
ies have found that inbreeding measured with genomic 
information can be more than double the estimate 
based on pedigree (Makanjuola et al., 2020a, Lozada-
Soto et al., 2021). Focusing merely on inbreeding will 
not be the best approach to achieve genetic improve-
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Table 4. The average breeding values for the different groups using only male animals among the selected 
candidates1

Group

Trait

NMI ($) CMI FMI DPR (%) Milk (kg) Fat (kg) Protein (kg)

C1 98 99 97 −0.51ab 144 2.33 4.37
C2 −135 −134 −138 −0.83a −165 −3.79a −4.56
C3 −40 −42 −35 −0.16cd −23a −0.59 −1.49a

C4 −87 −91 −80 −0.40bc −48a −3.53a −2.23a

C5 38 47 20 0.07d 36 3.89 3.36
a–dGroups with corresponding letters did not show statistically significant differences at P < 0.05.
1NMI = net merit index; CMI = cheese merit index; FMI = fluid milk index; DPR = daughter pregnancy rate.
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ment. Based on expected inbreeding, C4 was the most 
suited to mate with animals from any other cluster to 
achieve lower expected inbreeding. However, average 
breeding values showed that this does not result in the 
best performing males. With the exception of DPR, it 
ranks fourth based on all 3 indices and yield traits.

Additionally, strictly applying across cluster mating 
with more clusters may decrease the selection inten-
sity, which will slow the response to selection. Optimal 
contribution selection is an alternative, common, and 
helpful strategy to make genetic progress while limiting 
inbreeding (Meuwissen, 1997; Clark et al., 2013; Olsen 
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Figure 6. The expected inbreeding (calculated based on pedigree and all possible pairwise mating) when C1 sires are mated to dams of each 
cluster (C1, C2, C3, C4, C5). All animals are of generation 10 (G10).
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et al., 2013; Meuwissen et al., 2020). In large popula-
tions, such as dairy, inbreeding restrictions based on 
pedigree did not lead to less genetic progress than in-
breeding based on genomic information (Clark et al., 
2013). Breeders can use commercial software to balance 
their breeding goals with a level of inbreeding they find 
acceptable.

Due to alternative strategies and good software avail-
able to US Holstein breeders, our method might not 
provide additional benefit. Pedigrees have been record-
ed for more than 100 years, a wide range of phenotypes 
and animal information has allowed traditional BLUP 
evaluations for decades, and genomic selection was in-

corporated in 2009. Our method could potentially be 
more useful to genotyped populations with considerably 
less information. This includes smaller livestock breeds, 
recently developed breeds, or countries that started re-
cording recently. It can also be applied in conservation 
genetics where little is known about the population and 
strong selection is not applied to any particular trait.

CONCLUSIONS

Key sires within the US Holstein population were 
identified among sires with the most registered progeny 
born after 1985. Differences between clusters could be 
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Figure 7. The expected inbreeding (calculated based on pedigree and all possible pairwise mating) when C4 sires are mated to dams of each 
cluster (C1, C2, C3, C4, C5). All animals are of generation 10 (G10).
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observed in terms of international influence and time 
periods of use. Clusters with older bulls showed the 
worst performance for production but best for repro-
duction, which is expected due to strong selection over 
many generations. Clustering selection candidates into 
groups allows across cluster mating that can reduce the 
inbreeding of future generations. Based on the reduc-
tion of variance achieved by clustering and lower in-
breeding across cluster, up to 7 groups may be present 
among the selection candidates. While our method can 
decrease or maintain the expected future inbreeding, 
it must be used in conjunction with selection based 
on genetic merit. Our method may be more beneficial 
for breeds or species where little is known about the 
population.
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