1	Title: Sodium butyrate administration modulates the ruminal villus height,
2	inflammation-related gene expression, and plasma hormones concentration in dry cows
3	fed a high-fiber diet
4	
5	Authors: Rika FUKUMORI ¹ , Kazuya DOI ² , Taisei MOCHIZUKI ¹ , Shin OIKAWA ¹ ,
6	Satoshi GONDAIRA ¹ , Tomohito IWASAKI ³ and Kenichi IZUMI ²
7	
8	Institute, address, country: ¹ Department of Veterinary Medicine, School of Veterinary
9	Medicine, Rakuno Gakuen University, Ebetsu, Japan 069-8501; ² Department of
10	Sustainable Agriculture, College of Agriculture, Food and Environment Sciences,
11	Rakuno Gakuen University, Ebetsu, Japan 069-8501; ³ Department of Food Science and
12	Human Wellness, College of Agriculture, Food and Environment Sciences, Rakuno
13	Gakuen University, Ebetsu, Japan 069-8501
14	
15	Running Head: BUTYRATE ON RUMEN EPITHELIUM AND METABOLISM
16	
17	Correspondence: Kenichi Izumi
18	Email address: izmken@rakuno.ac.jp

1 ABSTRACT

2 The objectives of this study were to evaluate the effects of sodium butyrate on the 3 ruminal villus morphology, mRNA expression associated with nutrient metabolism and 4 inflammation in the ruminal epithelium, and plasma concentrations of metabolites and 5 hormones in non-lactating cows fed a high-fiber diet. Four Holstein cows with a rumen 6 cannula were assigned to 2 treatments in a crossover design. The treatments were 7 ruminal administration of sodium butyrate premix or control premix before feeding to 8 cows fed the same total mixed ration mainly composed of glass silage once a day. 9 Sodium butyrate was provided at a butyrate dose of 0.04% per kg body weight. The 10 control premix was made by replacing sodium-butyrate with wheat bran. The plasma β -11 hydroxybutyrate concentration increased 3 to 6 h after the butyrate premix 12 administration but returned to a concentration similar to that of the control before 13 feeding. After continuous administration, increases in the ruminal villus height and 14 plasma concentration of glucagon-like peptide-2, and lower gene expression of TNF- α , 15 IL-1 β , and TLR-2 in the rumen epithelium were observed in cows supplied with the 16 butyrate premix. These results showed that sodium butyrate affects rumen epithelial 17 morphology and plasma concentrations of hormones even under a low fermentable diet. 18 Keywords: butyrate, GLP-2, inflammation-related gene, rumen papillae, dairy cow

INTRODUCTION

2 In recent years, highly fermentable diets have been fed to dairy cattle to meet the 3 nutritional requirements of high lactating ability. Microorganisms utilize high starch 4 diets to produce large quantities of volatile fatty acids (VFA) in the rumen, causing 5 subacute rumen acidosis. Feeding diets with a high starch content also promote 6 posterior intestinal fermentation (Reynolds, 2006) and may induce hindgut acidosis (Li 7 et al., 2012). These have symptoms such as decreased feed intake, diarrhea, and 8 laminitis in dairy cattle, leading to decreased milk yield (Abdela, 2016), and are thus a 9 non-negligible issue in dairy farms. Highly fermentable diets produce large quantities of 10 VFA and accumulation in the rumen, causing damage to the rumen epithelium (Steele et 11 al., 2009). Additionally, low pH in the rumen kills gram-negative bacteria and increases 12 the proinflammatory lipopolysaccharide (LPS) within the rumen (Gozho et al., 2005; 13 2007). The rumen acidification causes damage and lowering of the barrier function of 14 rumen epithelial cells, and LPS migrates into the blood, binding to lipopolysaccharide-15 binding protein and causing inflammatory reactions such as laminitis (Nocek, 1997). To 16 prevent these harms, it is important to enhance the functions of nutrient absorption, pH 17 buffering and immunity in the ruminal epithelium. Adaptation of gastrointestinal 18 morphology and function to high-grain diets takes several weeks (Górka et al., 2017). 19 Therefore, in conventional perinatal management, it is recommended to increase the 20 grain ingestion from the close-up period in order to adapt to a highly fermentable diet 21 after calving, but excessive energy intake before calving is not appropriate because it 22 promotes negative energy balance (Hirabayashi et al., 2017). Therefore, an approach 23 that adapts the gastrointestinal tract during the dry period without supplying more

1	energy than necessary to respond quickly to postpartum highly fermentable diets may
2	be effective in preventing the health harms associated with rumen and hindgut acidosis.
3	Butyrate is one of the VFA produced by the ruminal fermentation of
4	carbohydrates and is effective in strengthening the structures and functions of the
5	gastrointestinal tract (Górka et al., 2018). In the ruminal epithelium, butyrate promotes
6	cell proliferation and the development of ruminal papillae (Górka et al., 2011; Kowalski
7	et al., 2015; Malhi et al., 2013). In addition to morphological changes, several studies
8	have reported that butyrate affects the nutrition-related gene expression in the rumen.
9	Regarding genes that affect intracellular pH regulation, the increase in ruminal butyrate
10	concentration increases the expression levels of short-chain fatty acid membrane
11	transport (MCT) in calves, lambs, and goats (Laarman et al., 2012; Liu et al., 2019; Yan
12	et al. 2014), and proton membrane transport (NHE) in calves and goats (Laarman et al.,
13	2012; Yan et al., 2014). Simmons et al. (2009) found that the gene expression of urea
14	transport-B1 (UT-B1) in the rumen epithelium of steers was increased by a concentrate-
15	based diet. From these studies, they speculated that the increased ruminal butyrate
16	fermentation due to high concentrate diets or exogenous butyrate may modulate the
17	expression of nutrition-related factors. Therefore, butyrate increases pH buffering
18	capacity and urea utilization in the rumen. Butyrate is also effective in suppressing the
19	inflammatory response by reducing NF- κ B activity involved in the transcriptional
20	regulation of cytokine genes such as tumor necrosis factor (TNF), and enhancing barrier
21	function by strengthening the connection of rumen epithelial cells (Zhang et al., 2018).
22	Butyrate is currently available as a feed supplement. In calves, the effects in the
23	forestomach and on small intestine development by adding sodium-butyrate to the diet
24	have been summarized by Górka et al. (2018). In addition, sodium-butyrate coated with

Animal Science Journal

1	fats was developed for slow dissolution and widespread absorption in the
2	gastrointestinal tract (Fernández-Rubio et al., 2009), and is available as a feed additive.
3	In the lower gastrointestinal tract, L cells present in the terminal ileum and colon are
4	stimulated by VFA, particularly butyrate, to stimulate the secretion of glucagon-like
5	peptide-2 (GLP-2) (Tappenden et al., 2003). Glucagon-like peptide-2 enhances the
6	development of intestinal epithelial cells (Taylor-Edwards et al., 2010; Connor et al.,
7	2013) and the barrier function of the ileum and colon (Walker et al. 2015). Our previous
8	study has shown that the supplementation of sodium-butyrate coated with fats increases
9	the plasma GLP-2 concentration in lactating cows (Fukumori et al., 2020), and
10	mitigated rectal acidosis after ruminal starch infusion (Fukumori et al., 2021).
11	Therefore, butyrate affects both the rumen and lower gastrointestinal epithelial tissues.
12	In addition, butyrate is a potent stimulator of insulin secretion and is itself converted to
13	BHBA in the rumen for use as an energy substrate in the body (Elsabagh et al., 2017),
14	so its supply may help improve insulin resistance during the parturition transition.
15	However, studies on the effects of these feed additives containing butyrate on the
16	gastrointestinal morphology and function have been conducted under the condition of
17	feeding moderately to highly fermentable diets such as for lactating cows and weaning
18	calves, and the effects under high-fiber diets such as those for dry cows have not been
19	investigated. If butyrate supplementation can affect the rumen and lower gastrointestinal
20	tract even in cows fed a high-fiber diet, it can be expected to be used as a feed additive
21	suitable for the transition period from the dry period to postpartum. Therefore, the
22	objectives of the present study were to determine the effect of ruminal administration of
23	sodium-butyrate on the ruminal villus height and thickness, inflammation-related gene

1	expression, and the plasma GLP-2 concentration in non-lactating cows fed a high-fiber
2	diet.
3	
4	MATERIALS AND METHODS
5	Cows used in this study were housed at the Rakuno Gakuen Field Education and
6	Research center (Ebetsu, Hokkaido, Japan). All procedures of this study were approved
7	by the Animal Experiment Committee of Rakuno Gakuen University (approval
8	#VH19C5).
9	
10	Experimental Design, Animals, and Treatments
11	Four Holstein Friesian cows (body weight 763 kg (SD 10), 51 mo. of age (SD
12	12), non-pregnant, non-lactating), each fitted with a rumen cannula, were used in this
13	study. Cows were housed in individual tie stalls laid with a rubber mat, and shredded
14	paper. The cows were randomly assigned to 2 treatments in a crossover design. The
15	treatment groups were the butyrate group (BUT) and the control group (CON). This
16	study consisted of two 28-d experimental periods, with a 21-d washout between them.
17	The data used in this study were collected through d 22, and later data are used in the
18	companion paper (Fukumori et al., 2021). The BUT cows were supplemented with
19	sodium-butyrate premix (Gustor BP70: 70% sodium butyrate and 30% other fatty acids:
20	Norel S.A., Madrid, Spain), while the CON cows were supplemented with a control
21	premix consisting of 70% wheat bran and 30% fatty acid mixtures. Gustor BP70 is a
22	commercially available feed additive, but in this experiment, treatment materials were
23	administered in the rumen to allow the prescribed amount to be ingested. The reason for
24	choosing wheat bran as a control is that the high fiber by-product is predominantly

1 acetate fermentation, and the effect of replacement is considered to be remarkable. The 2 dose quantity of butyrate was 0.04% of the body weight of each cow based on the 3 increased ruminal butyrate concentration in the study by Elsabagh et al. (2017), who 4 demonstrated ruminal infused butyrate increased plasma GLP-2 concentration in sheep. 5 Each premix was ruminally administered once a day just before feeding at 0900 h 6 through the rumen cannula. Cows were fed a total mixed ration (TMR), composed of 7 45.9% grass silage, 45.3% beet pulp pellets, 8.5% soybean meal, and 0.3% mineral and 8 vitamin premix [dry matter (DM) basis]. The nutrient components of TMR were 15.1% 9 crude protein, 45.9% neutral detergent fiber, and 28.9% non-fiber carbohydrate (as 10 DM). The diet was fed daily at 0900 h ad libitum to allow for approximately 8% 11 refusals. The feed refusals were removed at 0800 h and measured feed intake. All cows 12 had free access to water and mineral blocks. The eating time was measured with a load 13 cell attached to the feed box, and the rumination time was measured with an automated 14 rumination tag-monitoring system (HR-Tag and DataFlow II; SCR Engineers, Netanya, 15 Israel) equipped with a cow collar as validated by Schirmann et al. (2009).

16

17 Sample Collection

Samples of rumen papillae were collected from the rumen abdominal sac by grasping 19 10-15 villi by hand immediately before feeding on d 1 and 22 of each period. The 20 samples were visually sorted to ensure that they were taken completely from the base 21 and excluded those that were torn off in the middle. They were divided into samples for 22 measuring the morphology and gene expression. The sample for measuring morphology 23 was washed with phosphate-buffered saline (PBS) and then stored in tubes containing 24 10% formalin solution at room temperature until analysis. The sample for measuring

1	gene expression was washed with PBS and then immersed in RNA later stabilization
2	solution (Life Technologies, Carlsbad, CA, USA) in an RNAase-free tube and was
3	stored at -30°C until analysis.
4	Blood samples were collected by tail venipuncture on d 1, 8, and 15 before
5	feeding, and at 0, 3, and 6 h relative to feeding on d 22 of the collection period.
6	Heparinized tubes (Terumo, Tokyo, Japan) were immediately placed on ice. The tubes
7	were then centrifuged at 1,940 × g for 15 min at 4°C. The harvested plasma was stored
8	at -80°C until analysis to determine concentrations of β -hydroxybutyric acid (BHBA),
9	glucose, urea nitrogen (UN), insulin, and GLP-2.
10	The weight of feed offered and feed refusals were recorded daily. Samples of feed
11	ingredients and orts were collected from d 19 to 21 in each experimental period to
12	determine dry matter intake (DMI). These samples were stored in a refrigerator, then
13	composited for each period, and dried in a forced-air oven at 55°C for 48 h to determine
14	dry matter (DM) content.
15	
16	Sample Analyses
17	Rumen papillae samples used for microscopic observation were only those that
18	were definitely cut from the base [number of samples: 10.0 (SD 2.7)]. The samples
19	were immersed in PBS for 1 h after two 1 h immersions in distilled water. Thereafter,
20	dehydration was performed using a series of graded ethanol until 100% and immersion
21	for 1 h using 100% xylene. Samples were embedded in paraffin, and slices 5- μ m thick
22	were made with a sliding microtome (SAKURA, IVS-400, Saitama, Japan). The
23	sections were floated in warm water at 40°C, scooped up with glass slides, and dried at
24	36°C. Deparaffinized samples were treated with Mayer's hematoxylin for 10 min.

Animal Science Journal

1	Thereafter, they were washed with running water for 10 min and treated with distilled
2	water for 1 min. The samples were then immersed in an eosin solution for 3 min, then in
3	a graded series of ethanol (50%, 70%, 90% once each, and 100% three-times; each time
4	for 5 min) for dehydration and clearance with xylene I and xylene II for 2 min each
5	before encapsulation with Marinol. The height and thickness of the villi were measured
6	using an optical microscope (ECLIPSECi type; Nikon Corp., Tokyo, Japan).
7	Plasma concentrations of metabolites were measured using an automatic analyzer
8	(AU680; Olympus Corp., Tokyo, Japan) with commercially available kits for BHBA
9	(Wako Auto Kit 3-HB; Fujifilm Wako Pure Chemical Corp., Osaka, Japan), glucose
10	(Cicaliquid GLU; Kanto Chemical, Co., Inc., Tokyo, Japan), and UN (N-assay BUN-L;
11	Nittobo Medical Co. Ltd., Tokyo, Japan). Plasma insulin concentrations were measured
12	using a solid-phase competition immunoassay with bovine insulin (Sigma-Aldrich Inc.),
13	europium-labeled bovine insulin, and polystyrene microtiter strips coated with anti-
14	guinea pig γ -globulin as described by Masuda et al. (2019). The intra-assay CV was
15	4.2%, and the detection limit was 0.055 ng/mL. Plasma GLP-2 concentrations were
16	measured using a solid-phase competition immunoassay with synthetic human GLP-2
17	(Peptide Institute Inc., Osaka, Japan), europium-labeled human GLP-2, and polystyrene
18	microtiter strips. The strips were coated with goat anti-rabbit γ -globulin and anti-rat
19	GLP-2 serum targeting the N-terminal of the GLP-2 moiety (Yanaihara Institute Inc.,
20	Shizuoka, Japan) as described by Elsabagh et al. (2017). Intra- and inter-assay CV were
21	2.7 and 2.2%, respectively, and the detection limit was 0.042 ng/mL.
22	Total RNA of the rumen papillae was extracted using a Total RNA purification Kit
23	(Jena Bioscience GmbH, Germany). The purity of the extracted RNA was measured
24	using BioSpec-nano (Shimadzu, Kyoto, Japan) and all samples confirmed that

1	A260/280 was 1.8 or higher. De-DNA treatment used an RNase-Free DNase Set
2	(Qiagen, Duesseldorf, German). Complementary DNAs (cDNA) were synthesized from
3	500 ng of total RNA using a ReverTra Ace qPCR RT Master Mix kit (Toyobo, Osaka,
4	Japan). The synthesized cDNA was thermally denatured at 94°C for 30 s, followed by
5	annealing at 60°C for 30 s, and extension at 72°C for 30 seconds for 40 cycles using β -
6	actin primers and Taq DNA polymerase (NEB, USA). For each reaction, a parallel
7	negative control reaction was performed in the absence of reverse transcriptase. After
8	PCR-reaction, 10 μ L of increasing byproducts mixed with loading buffer was
9	electrophoresed on a 1.5% TAE agarose gel stained with ethidium bromide and were
10	visualized using a UV transilluminator. The reverse-transcribed cDNA was quantitated
11	using THUNDERBIRD SYBR qPCR Mix (Toyobo, Osaka, Japan) and CFX Connect
12	(Bio-Rad Laboratories, Hercules, Calif., USA). Each primer sequence is presented in
13	Table 1. Thermal cycling was performed for 40 cycles with initial denaturation at 95°C
14	for 5 min, followed by thermal denaturation at 95°C for 15 s, annealing at 60°C for 30 s,
15	and extension at 72°C for 30 s. In the melting curves, after the PCR, the temperature of
16	the reaction solution was raised from 55 to 95°C by 0.5°C, and a SYBR Green 1 signal
17	was detected. The expression levels of genes in the individual rumen epithelial samples
18	were calculated using the $\sigma\sigma CT$ method and normalized from the copies of the inner
19	target genes β -actin, DBNDD2 (dystrobrevin-binding protein domain containing 2),
20	and UXT (prefoldin-like chaperone).

22 Statistical Analysis

23 The daily amount of DMI, and eating and ruminating time were totaled, and the24 average value from d 19 to d 21 was calculated. The morphological changes in the

Animal Science Journal

1	rumen papillae associated with the treatments were expressed as a relative ratio of d 22
2	to d 1. The mRNA expression in BUT was expressed as a relative value when the
3	measurement in CON was 1.0.
4	All data were analyzed using the JMP fit model (version 13.2.1; SAS Institute
5	Inc., Cary, NC, USA). For analysis of changes in plasma components with days of
6	administration, the period, treatment, day, and interaction between treatment and day
7	were defined as fixed effects, and cows were defined as random effects. For analysis of
8	plasma component changes before and after feeding on d 22 of each period, the
9	treatment, time, and interaction between treatment and time were defined as fixed
10	effects, and cows were defined as random effects. For the analysis of DMI, eating and
11	ruminating time, and profiles of the rumen papillae, the period and treatment were fixed
12	effects, and cows were random effects. In all statistical treatments, $P < 0.05$ was
13	considered significant and $P < 0.1$ tended to approach significance.
14	
15	RESULTS AND DISCUSSION
16	Dry matter intake, and eating and ruminating behavior
17	The DMI, and eating and ruminating behavior in each group are presented in
18	Table 2. The DMI was 12.3 kg/d in BUT and 12.8 kg/d in CON, and there was no
19	significant difference. Sodium butyrate supplementation to mature cows did not affect
20	DMI in a previous report (Izumi et al., 2019), similar to the present result. The eating
21	and ruminating times were also similar in both treatments, and there was no significant
22	difference. The lack of influence of butyrate on feeding behavior may be due to the fact
23	that there was no inhibitory factor of DMI such as over fermentation in the
24	gastrointestinal tract because cows were fed a high-fiber diet.

2 Changes in ruminal villus height and thickness, and mRNA expression of rumen

3 *papillae*

1

4 The changes in the rumen papillae after 21 days of continuous treatments are 5 shown in Table 3. The height of the rumen papillae did not change in CON, but 6 increased from d 1 to d 22 in BUT (P = 0.01). Butyrate is effective in developing rumen 7 papillae (Górka et al., 2011), and it is thought that the uptake of butyrate in the rumen 8 epithelium directly affected the development of the rumen papillae. Rumen villus 9 thickness decreased from d1 to d22 in both treatments (P < 0.001) and did not differ 10 between treatments. It has been observed that feeding highly fermentable diets after 11 calving increases the height of rumen villi but decreases their thickness, which may 12 contribute to the increased efficiency of VFA absorption (Dieho et al., 2016). In the 13 present study, both the control premix and the butyrate premix contained palmitic acid 14 and stearic acid in the same ratio, and it was reported that these saturated fatty acids did 15 not inhibit rumen microbial fermentation, and in particular palmitic acid rather 16 improved NDF digestibility (de Sousa & Lock, 2018, 2019). The effect of these 17 saturated fatty acids on rumen villi has not been known, but they may have reduced 18 thickness through rumen fermentation.

- 19
- 20

In the present study, gene expressions of mRNA related to nutrient metabolism
(MCT-1, NHE-1, and UT-B1) in the rumen epithelium were investigated to verify
whether butyrate enhances nutrient absorption in the ruminal epithelium, but they were
not affected by treatment (Fig. 1). Urea transporters send urea from the blood into the

Page 13 of 35

Animal Science Journal

13

1	rumen and contribute to its reuse for microbial protein synthesis. Simmons et al. (2009)
2	reported an increase in the length of rumen papillae and an increase in urea-transporter
3	UT-B1 gene expression in steers fed a highly fermentable diet and they suggested that
4	the increase in butyrate fermentation in the rumen might have increased the UT-B1 gene
5	expression and the utility of urea. On the other hand, in the study in which butyrate was
6	exogenously infused, butyrate did not affect the recycling of UN (Whitelaw & Milne,
7	1991). Therefore, butyrate itself might not affect gene expression for urea uptake.
8	Transport of short-chain fatty acids and homeostasis of intracellular pH in the rumen
9	epithelium are regulated by the MCT-and NHE-families (Graham et al., 2007; Kuzinski
10	et al., 2012). Liu et al. (2019) conducted the oral administration of sodium-butyrate for
11	39 d and observed the increase in MCT-1 gene expression. On the other hand, Laarman
12	et al. (2013) reported that 7-d sodium-butyrate infusion increased MCT-1 protein
13	expression in the rumen epithelium, but it was not enough to make a significant
14	difference from the control group in lactating cows. These result suggests that the
15	duration of administration was associated with gene expression. Increased ruminal
16	butyrate concentration by feeding high concentrate diets (Laarman et al., 2012; Yan et
17	al., 2014), but exogenous butyrate supplement did not increased pH regulation (NHE:
18	Laarman et al., 2013; Liu et al., 2019), suggesting butyrate itself does not stimulate the
19	expression of NHE, and the expression may be influenced by the absolute amount of
20	VFA in the rumen.
21	The mRNA expression of TNF- α and TLR-2 in BUT was lower than in CON

(smaller than 1.0, P < 0.05). The mRNA expression of IL-1 β in BUT tended to be lower than that in CON (P < 0.1). The rumen and intestinal epithelium contain receptors that recognize endotoxins such as TLR2 and TLR4 (Chen & Oba, 2012; Villena et al., 2014)

1	that stimulate the receptors to produce IL-1 β and TNF- α , which induce inflammation
2	(Dai et al., 2017). Dai et al. (2017) reported that administration of butyrate to goats fed a
3	grain-based diet reduced gene expression of TLR-4, IL-1 β , and TNF- α . In this study,
4	the depression of ruminal pH was small due to the high NDF diet, and the risk of
5	ruminal acidosis was considered to be low. Under such conditions, whether the effect of
6	butyrate on reducing the expression of inflammation-related mRNA in ruminal
7	epithelium exerted a substantial effect has been unclear.
8	Because the dose of butyrate in previous studies listed above was equal to or
9	lower than that in this study (0.03%-0.04% of kg BW or 1.0%-2.5% of DMI (our study
10	was 2.4% of DMI)), the luck of effects on mRNA expression was probably not due to
11	the insufficient dose of butyrate. However, the increase in the ruminal butyrate
12	concentration by butyrate supplement in the present study [14.0 vs. 17.2 mM, presented
13	in the companion paper (Fukumori et al., 2021)] was smaller than that in previous study,
14	despite the same dose amount (14.1 vs. 21.4 mM, Dai et al., 2017). This may be because
15	their study used sodium butyrate, whereas we used fat-coated sodium butyrate, so the
16	amount of butyrate dissociated in the rumen and stimulated the ruminal epithelium
17	might be low.
18	
19	Changes in plasma concentrations of metabolites and hormones.

20 Changes in plasma parameters with days of administration are shown in Fig. 2.21 There was no difference between the treatments for plasma BUN concentrations

through the experimental period (Fig. 2A). The change in basal plasma BHBA

23 concentration was not observed (Fig. 2B), but plasma BHBA concentration was higher

in BUT than in CON at 3 and 6 h after administration (P < 0.05, Fig. 3A). When

1	butyrate is absorbed from the rumen, it is converted to BHBA in the ruminal epithelium,
2	but since there was no difference in the treatments in the basal concentration, the
3	administered butyrate disappeared from the rumen within 24 h after administration of
4	butyrate premix and was metabolized entirely in the blood.
5	Plasma insulin concentration was higher in BUT than in CON during the
6	experimental period ($P = 0.025$, Fig. 2C). In addition, plasma insulin concentrations in
7	BUT at 0 and 3 h after administration were higher than in CON ($P < 0.05$, Fig. 3B). The
8	potent stimulating effect of butyrate on insulin secretion is well known (DeJong, 1982,
9	Mann & Boda, 1967). However, the increase in plasma insulin concentration induced by
10	butyrate was not observed in studies of lactating dairy cows (Herrick et al., 2018; Izumi
11	et al., 2019). Lactating cows might have different insulin responses to butyrate because
12	they are fed highly fermentable diets or they have different physiological conditions.
13	The butyrate premix administration did not affect basal plasma glucose concentration
14	during the experimental period (Fig. 2D), but resulted in the short-term change
15	associated with administration, that is, plasma glucose concentration 3 h after
16	administration was lower in BUT than in CON ($P < 0.05$, Fig. 3C). The decrease in
17	plasma glucose by butyrate was consistent with previous reports (Herrick et al., 2018;
18	Huthanen et al., 1993), and likely due to an increased plasma insulin concentration. The
19	basal plasma GLP-2 concentration increased with the progress of the day from the start
20	of administration of the butyrate premix, but was not observed in CON, and the GLP-2
21	concentration was higher in BUT than in CON at d 22 (Fig. 2E, $P < 0.05$). The GLP-2-
22	stimulating effect of butyrate was confirmed in a previous report on intra-ruminal
23	infusion of VFA (ElSabagh et al., 2017). In addition, a similar result was obtained in
24	our previous study in which the same product as in this study was fed to lactating dairy

1	cows (Fukumori et al., 2020). Interestingly, the butyrate premix increased basal plasma
2	insulin and GLP-2 concentrations, even though the basal BHBA concentration did not
3	change (perhaps, the stimulation of butyrate absorption from the rumen had ended, but
4	postruminal stimulation might be persistent). Since the butyrate supplement used in the
5	present study was coated with fatty acids, it is presumed that part of it was not absorbed
6	in the rumen but was transferred to the small intestine, which might chronically
7	stimulate insulin and GLP-2 secretion. Therefore, we speculated that supplemented
8	butyrate had a lasting effect on the secretion of gut hormones. As a concern in this
9	study, there was a difference in plasma insulin and GLP-2 concentrations at the start (d
10	0). This study was performed with a crossover method with a 21-day wash-out period
11	between treatments, but may require a longer period considering its sustained effect on
12	the intestinal mucosa. Therefore, in this study, we considered the changes associated
13	with administration.
14	Regarding the effect of GLP-2 on inflammation, in an LPS-stimulated study in
15	which macrophages were exposed to GLP-2 in vitro the expression levels of IL-1 β and
16	TNF- α in macrophages decreased (Xie et al., 2014). Although there are few GLP-2
17	receptors in the rumen epithelium (Taylor-Edwards et al., 2010), the anti-inflammatory
18	effect of butyrate might be mediated not only by its direct effect on the rumen
19	epithelium, but also by its increased concentration of GLP-2 in the circulating blood.
20	Further studies are required regarding the contribution of GLP-2 to the rumen
21	epithelium.
22	Based on the responses to our study, continuous administration of sodium butyrate to
23	
	dry cows increased the height of rumen papillae, decreased inflammatory related gene

1	and GLP-2. Administration of sodium butyrate is thus expected to have effects on cows
2	fed a forage-based diet such as that during the dry period.
3	
4	ACKNOWLEDGMENTS
5	I would like to thank students of the Food and Feeding, Ruminology, and Herd
6	Health units at Rakuno Gakuen University and the staff of Rakuno Gakuen Field
7	Education and Research Center for their technical assistance. This work was financially
8	supported by the Japan Society for the Promotion of Science (#18K14593; Tokyo,
9	Japan). We thank Mr. Kim Barrymore (Sapporo, Japan) for critical reading of the
10	manuscript.
11	
12	
13	Conflict of interest
14	The authors have no conflicts of interest directly relevant to the content of this article.

2	Abdela, N. ((2016).	Sub-acute rumina	l acidosis ((SARA)) and its consec	quence in o	lairy
---	--------------	---------	------------------	--------------	--------	------------------	-------------	-------

3 cattle: A review of past and recent research at global prospective. Achievements in

4 *the Life Sciences*, 10(2), 187-196. DOI: 10.1016/j.als.2016.11.006

- 5 Chen, Y., & Oba, M. (2012). Variation of bacterial communities and expression of Toll-
- 6 like receptor genes in the rumen of steers differing in susceptibility to subacute
- 7 ruminal acidosis. *Veterinary Microbiology*, 159(3-4), 451-459. DOI:
- 8 10.1016/j.vetmic.2012.04.032
- 9 Connor, E. E., Kahl, S., Elsasser, T. H., Baldwin R.L. 6th,, Fayer, R., Santin-Duran, M.,
- 10 Sample, G. L., & Evock-Clover, C. M. (2013). Glucagon-like peptide 2 therapy
- 11 reduces negative effects of diarrhea on calf gut. *Journal of Dairy Science*, 96(3),
- 12 1793-1802. DOI: 10.3168/jds.2012-6216
- 13 Dai, H., Liu, X., Yan, J., Aabdin, Z. U., Bilal, M. S., & Shen, X. (2017). Sodium
- 14 butyrate ameliorates high-concentrate diet-induced inflammation in the rumen
- 15 epithelium of dairy goats. *Journal of Agricultural and Food Chemistry*, 65(3), 596-
- 16 604. DOI: 10.1021/acs.jafc.6b04447
- 17 DeJong, A. (1982). Patterns of plasma concentration of insulin and glucagon after
- 18 intravascular and intraruminal administration of volatile fatty acids in the goat.
- 19 *Journal of Endocrinology*, 92, 357-370.
- 20 de Souza, J., & Lock, A. L. (2018). Long-term palmitic acid supplementation interacts
- 21 with parity in lactating dairy cows: Production responses, nutrient digestibility, and
- energy partitioning. *Journal of Dairy Science*, 101(4), 3044-3056. DOI:
- 23 10.3168/jds.2017-13946

1	de Souza, J., & Lock, A. L. (2019). Milk production and nutrient digestibility responses
2	to triglyceride or fatty acid supplements enriched in palmitic acid. Journal of dairy
3	science, 102(5), 4155-4164. DOI: 10.3168/jds.2018-15690
4	Dieho, K., Bannink, A., Geurts, I. A. L., Schonewille, J. T., Gort, G., & Dijkstra, J.
5	(2016). Morphological adaptation of rumen papillae during the dry period and early
6	lactation as affected by rate of increase of concentrate allowance. Journal of Dairy
7	Science, 99(3), 2339-2352. DOI: 10.3168/jds.2015-9837
8	Die, J. V., Baldwin, R. L., Rowland, L. J., Li, R., Oh, S., Li, C., Ranilla, M. J.
9	(2017). Selection of internal reference genes for normalization of reverse
10	transcription quantitative polymerase chain reaction (RT-qPCR) analysis in the
11	rumen epithelium. Plos One, 12(2), e0172674. DOI: 10.1677/joe.0.0920357
12	Elsabagh, M., Inabu, Y., Obitsu, T., Sugino, T. (2017). Response of plasma glucagon-
13	like peptide-2 to feeding pattern and intraruminal administration of volatile fatty
14	acids in sheep. Domestic Animal Endocrinology, 60, 31-41. DOI:
15	10.1016/j.domaniend.2017.03.001
16	Fernández-Rubio, C., Ordóñez, C., Abad-González, J., Garcia-Gallego, A., Pilar
17	Honrubia, A., Mallo, J. J., Balaña-Fouce, R. (2009). Butyric acid-based feed additives
18	help protect broiler chickens from Salmonella Enteritidis infection. Poultry Science.
19	88(5), 943-948. DOI: 10.3382/ps/2008-00484.
20	Fukumori, R., Ikeno, R., Izumi, K., Doi, K., Otsuka, M., Suzuki K., & Oikawa, S.
21	(2021). The effect of sodium butyrate supplementation on ruminal and fecal pH and
22	serum lipopolysaccharide-binding protein after ruminal acidosis challenge in non-
23	lactating cows. Animal Science Journal, 92, e13673. DOI: 10.1111/asj.13673

1	Fukumori, R., Oba, M., Izumi, K., Otsuka, M., Suzuki, K., Gondaira, S., Oikawa, S.
2	(2020). Effects of butyrate supplementation on blood glucagon-like peptide-2
3	concentration and gastrointestinal functions of lactating dairy cows fed diets differing
4	in starch content. Journal of Dairy Science, 103(4), 3656-3667. DOI:
5	10.3168/jds.2019-17677
6	Gondaira, S., Higuchi, H., Iwano, H., Nakajima, K., Kawai, K., Hashiguchi, S.,
7	Nagahata, H. (2015). Cytokine mRNA profiling and the proliferative response of
8	bovine peripheral blood mononuclear cells to Mycoplasma bovis. Veterinary
9	Immunology and Immunopathology, 165(1-2), 45-53. DOI:
10	10.1016/j.vetimm.2015.03.002
11	Gozho, G. N., Plaizier, J. C., Krause, D. O., Kennedy, A. D., & Wittenberg, K. M.
12	(2005). Subacute ruminal acidosis induces ruminal lipopolysaccharide endotoxin
13	release and triggers an inflammatory response. Journal of Dairy Science, 88(4), 1399-
14	1403. DOI: 10.3168/jds.S0022-0302(05)72807-1
15	Gozho, G. N., Krause, D. O., & Plaizier, J. C. (2007). Ruminal lipopolysaccharide
16	concentration and inflammatory response during grain-induced subacute ruminal
17	acidosis in dairy cows. Journal of Dairy Science, 90(2), 856-866. DOI:
18	10.3168/jds.S0022-0302(07)71569-2
19	Graham, C., Gatherar, I., Haslam, I., Glanville, M., & Simmons, N. L. (2007).
20	Expression and localization of monocarboxylate transporters and sodium/proton
21	exchangers in bovine rumen epithelium. American Journal of Physiology.
22	Regulatory, Integrative and Comparative Physiology 292(2), 997-1007. DOI:
23	10.1152/ajpregu.00343.2006

1	Górka, P., Kowalski, Z. M., Pietrzak, P., Kotunia, A., Jagusiak, W., Holst, J. J.,
2	Zabielski, R. (2011). Effect of method of delivery of sodium butyrate on rumen
3	development in newborn calves. Journal of Dairy Science, 94(11), 5578-5588. DOI:
4	10.3168/jds.2011-4166
5	Górka, P., Schurmann, B. L., Walpol, M. E., Błońska, A., Li, S., Plaizier, J. C.,
6	Kowalski, A. M., & Penner, G. B. (2017). Effect of increasing the proportion of
7	dietary concentrate on gastrointestinal tract measurements and brush border enzyme
8	activity in Holstein steers. Journal of Dairy Science 100, 4539-4551.
9	DOI:10.3168/jds.2016-12162
10	Górka, P., Śliwiński, B., Flaga, J., Olszewski, J., Wojciechowski, M., Krupa, K.,
11	Kowalski, Z. M. (2018). Effect of exogenous butyrate on the gastrointestinal tract of
12	sheep. I. Structure and function of the rumen, omasum, and abomasum. Journal of
13	Animal Science, 96(12), 5311-5324. DOI: 10.1093/jas/sky367
14	Herrick, K. J., Hippen, A. R., Kalscheur, K. F., Schingoethe, D. J., Ranathunga, S. D.,
15	Anderson, J. L., Moreland, S. C., & van Eys, J. E. (2018). Infusion of butyrate affects
16	plasma glucose, butyrate, and β -hydroxybutyrate but not plasma insulin in lactating
17	dairy cows. Journal of Dairy Science, 101, 3524-3536. DOI: 10.3168/jds.2017-13842
18	Hirabayashi, H., Kawashima, K., Okimura, T., Tateno, A., Suzuki, A., Asakuma, S.,…
19	Kushibiki, S. (2017). Effect of nutrient levels during the far-off period on postpartum
20	productivity in dairy cows. Animal Science Journal, 88, 1162-1170. DOI:
21	10.1111/asj.12743.
22	Huhtanen, P., Miettinen, H., & Ylinen, M. (1993). Effect of increasing ruminal butyrate
23	on milk yield and blood constituents in dairy cows fed a grass silage-based diet.

1	Izumi, K., Fukumori, R., Oikawa, S., & Oba, M. (2019). Effects of butyrate
2	supplementation on the productivity of lactating dairy cows fed diets differing in
3	starch content. Journal of Dairy Science, 102, 11051-11056. DOI: 10.3168/jds.2019-
4	17113
5	Kowalski, Z. M., Górka, P., Flaga, J., Barteczko, A., Burakowska, K., Oprządek, J., &
6	Zabielski, R. (2015). Effect of microencapsulated sodium butyrate in the close-up
7	diet on performance of dairy cows in the early lactation period. Journal of Dairy
8	Science, 98(5), 3284-3291. DOI: 10.3168/jds.2014-8688
9	Kuzinski, J., Zitnan, R., Albrecht, E., Viergutz, T., & Schweigel-Röntgen, M. (2012).
10	Modulation of vH+-ATPase is part of the functional adaptation of sheep rumen
11	epithelium to high-energy diet. American Journal of Physiology. Regulatory,
12	Integrative and Comparative Physiology, 303(9), 909-920. DOI:
13	10.1152/ajpregu.00597.2011
14	Li, S., Khafipour, E., Krause, D. O., Kroeker, A., Rodriguez-Lecompte, J. C., Gozho, G.
15	N., Plaizier, J. C. (2012). Effects of subacute ruminal acidosis challenges on
16	fermentation and endotoxins in the rumen and hindgut of dairy cows. Journal of
17	Dairy Science, 95(1), 294-303. DOI: 10.3168/jds.2011-4447.
18	Laarman, A. H., Ruiz-Sanchez, A. L., Sugino, T., Guan, L. L., & Oba, M. (2012).
19	Effects of feeding a calf starter on molecular adaptations in the ruminal epithelium
20	and liver of Holstein dairy calves. Journal of Dairy Science, 95(5), 2585-2594. DOI:
21	10.3168/jds.2011-4788
22	Laarman, A. H., Dionissopoulos, L., AlZahal, O., Greenwood, S. L., Steele, M. A., &
23	McBride, B. W. (2013). Butyrate and subacute ruminal acidosis affect abundance of
24	membrane proteins involved with proton and short chain fatty acid transport in the

1	rumen epithelium of dairy cows. American Journal of Animal and Veterinary
2	Sciences, 8(4), 220-229. DOI: 10.3844/ajavsp.2013.220.229
3	Liu, L., Sun, D., Mao, S., Zhu, W., & Liu, J. (2019). Infusion of sodium butyrate
4	promotes rumen papillae growth and enhances expression of genes related to rumen
5	epithelial VFA uptake and metabolism in neonatal twin lambs. Journal of Animal
6	Science, 97(2), 909-921. DOI: 10.1093/jas/sky459
7	Manns, J. G., & Boda, J. M. (1967). Insulin release by acetate, propionate, butyrate and
8	glucose in lambs and adult sheep. American Journal of Physiology, 212, 747-755.
9	Masuda, Y., Fukumori, R., Yanai, R., Takeuchi, A., Sarentonglaga, B., Sugino, T., &
10	Nagao, Y. (2019). Effects of supplementation with calcium salts of medium-chain
11	fatty acids on the plasma metabolic hormone concentrations in weaning beef calves.
12	Animal Behaviour and Management, 55(2), 82-93. DOI: 10.20652/jabm.55.2_82
13	Malhi, M., Gui, H., Yao, L., Aschenbach, J. R., Gäbel, G., & Shen, Z. (2013). Increased
14	papillae growth and enhanced short-chain fatty acid absorption in the rumen of goats
15	are associated with transient increases in cyclin D1 expression after ruminal butyrate
16	infusion. Journal of Dairy Science, 96(12), 7603-7616. DOI: 10.3168/jds.2013-6700
17	Nocek, J. E. (1997). Bovine acidosis: implications on laminitis. Journal of Dairy
18	Science, 80(5), 1005-1008. DOI: 10.3168/jds.S0022-0302(97)76026-0.
19	Reynolds, C. K. (2006). Production and metabolic effects of site of starch digestion in
20	dairy cattle. Animal Feed Science and Technology, 130(1-2), 78-94. DOI:
21	10.1016/j.anifeedsci.2006.01.019
22	Schirmann K, von Keyserlingk MAG, Weary DM, Veira DM, Heuwieser W. (2009).
23	Technical note: Validation of a system for monitoring rumination in dairy cows.

24 *Journal of Dairy Science*, 92, 6052-6055.

1	Simmons, N. L., Chaudhry, A. S., Graham, C., Scriven, E. S., Thistlethwaite, A., Smith,
2	C. P., & Stewart, G. S. (2009). Dietary regulation of ruminal bovine UT-B1 urea
3	transporter expression and localization. Journal of Animal Science, 87(10), 3288-
4	3299.
5	Steele, M. A., AlZahal, O., Hook, S. E., Croom, J., & McBride, B. W. 2009. Ruminal
6	acidosis and the rapid onset of ruminal parakeratosis in a mature dairy cow: a case
7	report. Acta Veterinaria Scandinavica, 51(1), 1-6. DOI: 10.2527/jas.2008-1710
8	Tappenden, K. A., Albin, D. A., Bartholome, A. L., & Mangian, H. F. (2003).
9	Glucagon-like peptide-2 and short-chain fatty acids: a new twist to an old story.
10	Journal of Nutrtion, 133(11), 3717-3720. DOI: 10.1093/jn/133/11/3717
11	Taylor-Edwards, C. C., Burrin, D. G., Matthews, J. C., McLeod, K. R., Holst, J. J., &
12	Harmon, D. L. (2010). Expression of mRNA for proglucagon and glucagon-like
13	peptide-2 (GLP-2) receptor in the ruminant gastrointestinal tract and the influence of
14	energy intake. Domestic Animal Endocrinology, 39(3), 181-193. DOI:
15	10.1016/j.domaniend.2010.05.002
16	Villena, J., Aso, H., & Kitazawa, H. (2014). Regulation of toll-like receptors-mediated
17	inflammation by immunobiotics in bovine intestinal epitheliocytes: role of signaling
18	pathways and negative regulators. Frontiers in Immunology, 5, 421. DOI:
19	10.3389/fimmu.2014.00421
20	Walker, M. P., Evock-Clover, C. M., Elsasser, T. H., Connor, E. E. (2015). Short
21	communication: glucagon-like peptide-2 and coccidiosis after tight junction gene
22	expression in the gastrointestinal tract of dairy calves. Journal of Dairy Science, 98
23	(5), 3432-3437. DOI: 10.3168/jds.2014-8919

2	5
	Э

1	Whitelaw, F. G., & Milne, J. S. (1991). Urea degradation in sheep nourished by
2	intragastric infusion: effects of level and nature of energy inputs. Experimental
3	Physiology, 76(1), 77-90. DOI: 10.1113/expphysiol.1991.sp003483
4	Xie, S., Liu, B., Fu, S., Wang, W., Yin, Y., Li, N., Liu, D. (2014). GLP-2 suppresses
5	LPS-induced inflammation in macrophages by inhibiting ERK phosphorylation and
6	NF-KB activation. <i>Cellular Physiology and Biochemistry</i> , 34(2), 590-602. DOI:
7	10.1159/000363025
8	Yan, L., Zhang, B., & Shen, Z. (2014). Dietary modulation of the expression of genes
9	involved in short-chain fatty acid absorption in the rumen epithelium is related to
10	short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy
11	Science, 97:5668-5675. DOI: 10.3168/jds.2013-7807.
12	Zhang, K., Meng, M., Gao, L., Tu, Y., & Bai, Y. (2018). Sodium butyrate improves
13	high-concentrate-diet-induced impairment of ruminal epithelium barrier function in
14	goats. Journal of Agricultural and Food Chemistry, 66(33), 8729-8736. DOI:
15	10.1021/acs.jafc.8b03108

Figures and tables

Table 1. Primers used in real-time PCR analysis			
Target gene ¹	Primer sequence (5'-3')	reference	
П 18	F: AGTGCCTACGCACATGTCTTC	Gondaira et al. (2015)	
IL-IP	R:TGCGTCACACAGAAACTCGTC		
TNE	F:TCTTCTCAAGCCTCAAGTAACAAGC		
INF-U	R:AATGACAGCGGCGTCTACTT	Gondaira et al. (2015)	
	F:CATTCCCTGGCAAGTGGATTATC		
ILK-4	R:GGAATGGCCTTCTTGTCAATGG	Gondaira et al. (2015)	
	F:CTTCCCGGGGGGATGTTTCAA		
TLR-2	R:CCTGAGGCGGTTTCTACTCG	Gondaira et al. (2015)	
	F:GAAAGACAAGCTCAACCGGTTT		
NHE-I	R:GGAGCGCTCACCGGCTAT	Laarman et al. (2012)	
	F:ATCTACGCGGGATTCTTTGGA	1 (2012)	
MCT-1	R:AAGGTCCATCAGCGTTTCAAA	Laarman et al. (2012)	
	F:TGCCTAA-CATAACGAGTTC		
UT-BI	R:GAAGATGC-CCCCTGTCCACGG	Simmons et al. (2009)	
	F:AGCAAGCAGGACTACGATGAG		
β-actin	R:ATCCAACCGACTGCTGTCA	Gondaira et al. (2015)	

	F:GTGGAGCTTATCGACCTGGG					
DBNDD2		Die et al. (2017)				
	R:GGAGTTGGTGGAGGGTCTTC					
UXT	F:CACATGTTGCTAGAGGGGGCT	Dia at al. (2017)				
	R:TCAGTGCTGAGTCTCTGGGA	Die et al. (2017)				

¹ IL-1 β = interleukin-1 β , TNF- α = tumor necrosis factor- α ; TLR-4 = toll like receptor-4; TLR-2 = toll like receptor-2; NHE-1 = NA+/H+ exchanger isoforms 1; MCT-1 = Monocarboxylate transporter isoform1; UT-B1 = Urea transporter-B1; DBNDD2 = dystrobrevin-binding protein domain containing 2; UXT = prefoldin-like chaperone.

	Treat	ment ²	SEM	<i>P</i> -value
	CON	BUT		
DMI, kg/d	12.3	12.8	1.03	0.517
Eating time, min/d	206	229	21.2	0.385
Ruminating time,	458	466	72.7	0.867
min/d				

Table 2. Effects of sodium butyrate on DMI, eating and ruminating behavior¹

¹The average value from d 19 to d 21 was calculated. Values are least squares means

(LSMEAN).

²CON =control group; BUT =butyrate group (n = 4, cross-over).

	d 1		(d 22		<i>P</i> -value ³		
	CON^2	BUT ²	CON	BUT	- SFM	Butyrate	Time	Butyrate
	CON	BUT	CON	001	SLIVI	Butylate		×Time
Height								
mm	6.17 ^{ab}	5.29 ^b	5.64 ^{ab}	6.97 ^a	0.71	0.63	0.24	0.04
∞ 4	100 ^b	100 ^b	94.7 ^b	133.9 ^a	9.80	0.01	0.03	0.01
Tickness								
μ m	112	103	76.6	82.0	5.40	0.74	<0.001	0.19

Table 3. Effects of sodium butyrate on the development of rumen papillae¹

%	100	100	68.7	80.1	5.00	0.31	0.001	0.31

¹ Values are least squares means (LSMEAN; n = 4, cross-over).

² CON = control group; BUT = butyrate group.

³ Effect of butyrate administration (Butyrate), timely change (Time), and their

interaction (Butyrate×Time).

⁴Data are presented as the relative value of d 22 against that of d 1.

Figure 1. The effects of sodium butyrate on messenger RNA expression of genes in the rumen epithelial after 21-d administration. The data are presented as values relative to CON. The value are means \pm SEM, n = 4. MCT-1 = Monocarboxylate transporter isoform1; NHE-1 = NA+/H+ exchanger isoforms 1; UT-B1 = Urea transporter-B1; TLR-2 = toll like receptor-2; TLR-4 = toll like receptor-4; IL-1 β = interleukin-1 β , TNF- α = tumor necrosis factor- α .

Differences in tendency (P < 0.1) are indicated by *, and significant differences (P < 0.05) are indicated by **.

Figure 2. Effects of sodium butyrate on plasma concentrations of BUN (A), BHBA (B), insulin (C), glucose (D), and GLP-2 (E). The Values are LSMEAN, n = 4. The solid line shows CON and the dashed line shows BUT. Significant differences between treatments at the same time point are indicated by asterisks.

Figure 3. Temporal changes in plasma concentrations of BHBA (A), insulin (B), and glucose (C) in cows after administration of CON and BUT premix. Values are LSMEAN, n = 4. The solid line shows CON and the dashed line shows BUT. Significant differences between treatments at the same time point are indicated by asterisks.

Figure 1.

Figure 2.

Figure 3.

タイトル:高繊維質飼料給与下において非泌乳牛への酪酸塩の投与はルーメン 絨毛長、炎症関連遺伝子発現量、血漿ホルモン濃度を変化させる

著者: 福森理加¹, 土井和也², 望月大聖¹, 及川 伸¹, 権平 智¹, 岩崎智仁³,

泉 賢一2

¹ 酪農学園大学獣医学群獣医学類,北海道江別市;² 酪農学園大学農食環境学群循 環農学類,北海道江別市;³ 酪農学園大学農食環境学群食と健康学類,北海道江 別市

責任著者: Kenichi Izumi Email address: izmken@rakuno.ac.jp

抄録

本研究の目的は、高繊維質飼料給与下の非泌乳牛において、酪酸塩の補給が ルーメン絨毛の形態、ルーメン絨毛の栄養吸収ならびに炎症関連遺伝子発現 量、血漿ホルモンおよび代謝産物濃度に及ぼす影響を解析することであった。 ルーメンカニューレが装着されたホルスタイン種乳牛(非妊娠・非泌乳)を4 頭用い、2処理区反転法にて試験を実施した。処理区には、酪酸塩を含むプレ ミックスを投与する酪酸区と、酪酸塩部分を小麦フスマで置き換えたプレミッ クスを投与する対照区の2処理区を設け、いずれも同一の基礎飼料(グラスサ イレージ主体混合飼料)を給餌する直前にルーメン内へ単回投与した。酪酸塩 投与量は酪酸として体重当たり 0.04%に設定した。投与開始 22 日目において、 酪酸区のルーメン絨毛長が対照区と比較して長く、血漿 GLP-2 濃度が高く、ル ーメン絨毛における TNF-α、IL-1β および TLR-2 遺伝子発現量が低いことが確 認された。酪酸区の血漿 BHBA 濃度は投与後 3 および 6 時間目において対照区 と比較して高値を示したが、翌日の投与直前には対照区と同レベルに戻ってい た。これらの結果から酪酸塩は高繊維質飼料のような低発酵性飼料を給与して いる条件下においてもルーメン上皮や血中ホルモン濃度に影響を及ぼすことが 示された。