Elsevier Editorial System(tm) for Regulatory Peptides Manuscript Draft

Manuscript Number: REGPEP-D-09-00073R1

Title: Molecular cloning of growth hormone secretagogue-receptor and effect of quail ghrelin on gastrointestinal motility in Japanese quail

Article Type: Full Length Article

Keywords: Chicken, Japanese quail, Ghrelin, Growth hormone secretagogue-receptor, Gastrointestinal tract, Motilin

Corresponding Author: Professor Takio Kitazawa,

Corresponding Author's Institution: Rakuno Gakuen University

First Author: Takio Kitazawa

Order of Authors: Takio Kitazawa

Abstract: We identified a growth hormone secretagogue-receptor (GHS-R) for ghrelin (GRLN) in the Japanese quail, and examined relationship between its receptor distribution and the effects of ghrelin on the gastrointestinal tract of the quail. GHS-R expression and GRLN-induced response were also investigated in the chicken and compared with quail. Several types of GHS-R, namely GHS-R1a-L, GHS-R1a-S, GHS-R1aV, GHS-R1b, GHS-R1bV and GHS-R1tv-like receptor, were identified in quail cerebellum cDNA. Amino acid sequence of quail GHS-R1a-L was 98% identical to that of chicken GHS-R1a. GHS-R1a mRNA was expressed heterogeneously in the quail gastrointestinal tract with a high expression level in the colon, moderate levels in the esophagus and crop, and low levels in the proventriculus, gizzard and small intestine. The region-specific expression pattern was almost the same as that in the chicken. Chicken and quail GRLN caused contraction in the crop, proventriculus and colon of both the quail and chicken, whereas the small intestine was less sensitive. However, the contractile efficacy was more potent in the chicken than in the quail. Chicken motilin (MTL), another gut peptide, structurally resemble to GRLN, caused

marked contraction in the small intestine of both the quail and chicken, and the region-specific effect of MTL was opposite to that of GRLN. In conclusion, GRLN mainly induces the contractile responses of the upper and lower gastrointestinal tract and MTL stimulates motility of the middle intestine in both the quail and chicken. Regions in which GRLN acts were consistent with the distribution of GHS-R1a mRNA, but the contractile efficacy was different in the quail and chicken. These results suggest a species-specific contribution of GRLN in the regulation of avian gastrointestinal contractility.

July 3th, 2009

Prof WE Schmidt Dept of Medicine I Ruhr-University Bochem, St.Josef Hospital Gudrunste.56, D-44791, Bochem, Germany

Re: REGPEP-D-09-00073

Dear Dr. Schmidt

We are re-submitting our manuscript to you for consideration of its possible publication in *Regulatory Peptides*, TITLE: **Molecular cloning of growth hormone secretagogue-receptor and effect of quail ghrelin on gastrointestinal motility in Japanese quail,** by Kitazawa et al.

Thank you for the reviewers' useful comments on our manuscript. Considering the comments, we have revised the manuscript. I am a little bit afraid that the referees satisfy our revision but I did my best in this manuscript. Please check the responses to the reviewers' comments and the revised version of the manuscript.

Thank you for considering this paper for possible publication in Regulatory Peptides.

Sincerely,

Takio Kitazawa, Ph.D., D.V.M. Professor of Veterinary Pharmacology TEL +81-11-388-4795 FAX +81-11-387-5890 e-mail: <u>tko-kita@rakuno.ac.jp</u>

Responses to Reviewer's Comments

We sincere express our gratitude for the reviewer's comments to improve our manuscript. Point-by-point answers for the comments and queries are described below

Comments of the Reviewer1

Q: The authors made a mistake in the graph legends for chicken ghrelin (;) and quail ghrelin (?) in Figure 4. This should be corrected. The results in this figure showed a remarkable difference in changes in intracellular Ca2+ concentrations between chicken and quail ghrelin treatment. An explanation or discussion of this difference from the standpoint of the structure-activity relationship for chicken and quail ghrelin is important for readers and should be included in the discussion section.

A: We thank the reviewer for picking up this mistake. We have changed the legend for Figure 4. Before doing the experiments, we expected that quail GRLN could be more effective to quail GHS-R than chicken GRLN. However, interestingly, the result is opposite: quail GRLN was less effective than chicken GRLN. It is responsible for difference in amino acid sequence of peptides: amino acid sequence between quail and chicken GRLN differs at three positions (8, 17, 22), the differences in chicken GRLN might affect positively the binding to the quail GHS-R and subsequent increase in Ca^{2+} concentration, despite of the heterologous system. In addition to this, physiological significance of the different responsiveness has been unclear yet, we postulate that quail may be a low sensitive to GRLN compared with chicken because of the present results. Different responses of GRLN between chicken and quail observed in previous food intake study and the current GI contraction study suggest species-specific physiological roles of GRLN in either quail or chicken (P26, L445-454, P42 Figure 4 legend).

Minor comments

 Locations of the companies should be stated in the manuscript. P8, L105, P8, L124 and P9, 139.

A: Name and location of animal service companies have been added in the revised version (P7 L107-108). Company names have been indicated at the first time when it appeared in the text. In the case of P8 L124, Invitrogen has already described (P7 L121).

2) The accession numbers of genes in the legend of Fig. 2 should also be stated in the Materials and Methods section of the manuscript.

A: We agreed with the reviewer's suggestion and the accession numbers of genes have been stated in the Methods section of the manuscript (see Materials in the revised MS).

3) P24, L413-414: A report concerning the natural knockout of rodent motilin should be quoted. (e.g., Peeters, Neurogastroenterol Motil 2004;16:687, Aerssens J, Neurogastroenterol Motil 2004;16:841)

A: As the reviewer mentioned, references concerning the natural knockout of motilin and motilin receptor genes are needed. We have inserted two references that the reviewer had recommended (P25 L436, reference number 25, 26 in the revised MS).

4) P37: Primer concentrations in Table 1 are complicated. Moving these descriptions to Materials and Methods is recommended.

A: We agreed the reviewer suggestion, and the primer concentrations were described in the Methods section and the Table 1 has been changed (see Materials and Methods, Table 1).

5) Notations should be unified. P28, L488: MTL receptor (MTL-R) and P7, L96: MTL receptor (GPR38).

A: "MTL receptor" has been used throughout the revised version (P30L518-519).

6) The authors used the term "affinities to the receptors" in the manuscript (P20, L336). However, in this study, the authors investigated "the effect on changes of intracellular Ca2+", not "receptor affinity". This should be rewritten.

A: As the reviewer pointed out, we had not done the binding study. Therefore, "affinity" is not correct expression. We used "effective or effectiveness" in the revised version (P21 L357-359).

Comments of the Reviewer-3:

1) In the abstract line 18: ... and examined firstly the relationship between... and secondly the effects on the...

A: As the reviewer pointed out, this sentence was a little bit complicated. We have divided this section into two sentences to make it clear (P2 L17-20).

2) line 19: ...the effects in the chicken...

A: This section revised according to the comment (P2 L17-20).

3) line 27: ...and colon of both the quail and chicken, whereas the small intestine...A: This section revised according to the comment (P2 L28-29).

4) lines 48-50: "GRLN is an important ... gastric acid secretion [2]" needs rephrase A: This section has been a little complicated. We have rephrased the sentence (P4 L49-51)

5) line 77: has been observed in another bird, the Japanese quail [13]. Interestingly it is observed that this effect is opposite in mammals and some teleost...

A: As the reviewer pointed out, this section was complicated. We revised the sentence in the revised version (P5-6 L77-80)

6) line 79: delete Thus..., start with "Birds are..."

A: "Thus" was deleted and start "Birds are..." (P6 L80)

7) line 80: delete However..., start with "Furthermore, it is interesting..."

A: We agreed the reviewer comment. Instead of "However", "Furthermore" has been used in the revised version (P6 L81)

8) line 81-82: quail: GRLN in low dose stimulates food intake, whereas in high dose inhibits food intake [19].

A: We agreed the reviewer comment and this was revised (P6 L82-81)

9) line 90: in the Japanese quail

A: We have revised "in the" before Japanese quail (P6 L91).

10) line 92:In addition, it was investigated the relationship between tissue distribution... mechanical response to GRLN in different parts of the....

A: We have changed this section following the comment (P6 L93-94).

11) line 98: tract of the quail and it was compared to the GRLN's effects.

A: This section has been revised as follow "the gastrointestinal tract of both the chicken and the quail and it was compared to the GRLN-induced responses. (P7 L98-100)

12) lines 345-6: rephrase the "in whole intact tissue were also measured" (???)

A: As the referee pointed out, the meaning of this section was unclear. We have rephrased as follow "mRNA expression levels in whole gastrointestinal tract as well as in smooth muscle

layers without mucosa were also measured" (P22 L367-368).

13) line 372 "than that of chicken GRLN -induced in the chicken" (??) what do you mean?

A: As indicated in Fig. 6, when the responsiveness was compared in the homologous system such as quail GRLN to quail GI and chicken GRLN to chicken GI, we could observe much stronger effect in the chicken system than in the quail system, in terms of GI contractile response. Fig. 7 indicated the value of relative contraction induced by GRLN in the respective birds. This section revised more precisely in the revised version (P23, L393-395).

14) line 399: also caused contraction ...

A: "contraction" has been used in the revised manuscript (P25 L421).

15) DISCUSSION line 405-408: In the present study, we identified GHS-R in the Japanese quail and examined the extent of GHS-R1a mRNA distribution in the Japanese quail gastrointestinal tract and the effect of GRLN on the motility of the gastrointestinal tract. GHS-R 1a expression and GRLN-induced responses were also investigated in the chicken and compared with quail.

A: We agreed with the reviewer's suggestion. The part was revised (P25 L427-431).

16) line 418: instead of "and the long type and short type..." prefered "while or whereas the long type and..."

A: Instead of "and", "while" has been used in the revised manuscript (P26 L440)

17) line 430: there has not been any report on..., not even in the chicen; but..."

A: We agreed the reviewer comment, and this section has been revised (P27 L459-460)

18) line 448: Furthermore, as previously reported, we identified a cDNA... as GHS-R1tv [13].A: We agreed the reviewer comment, and this section has been revised (P28 L477)

19) line 469: GRLN-induced contraction was ...

A: We agreed the reviewer comment, and this section has been revised (P29 L498)

20) Figure 3 legend: too big. is it possible to be shrieked?

A: We have included almost all explanation in the revised manuscript (P20-21, Figure 3 legend). Fig. 3 has been a little bit changed for better understanding of the data. 1 Molecular cloning of growth hormone secretagogue-receptor and effect

- 2 of quail ghrelin on gastrointestinal motility in Japanese quail
- 3
- 4
- 5 Takio Kitazawa^{1*}, Yoshimi Maeda¹, Hiroyuki Kaiya²
- 6 ¹Department of Pharmacology, School of Veterinary Medicine, Rakuno Gakuen
- 7 University, Ebetsu, Hokkaido 069-8501, Japan.
- 8 ²Department of Biochemistry, National Cardiovascular Center Research Institute, Suita,
- 9 Osaka 565-8565, Japan.
- 10
- 11 *Corresponding author: Takio Kitazawa, Ph.D.
- 12 Tel: +81-11-388-4795, Fax: +81-11-387-5890
- 13 e-mail: <u>tko-kita@rakuno.ac.jp</u>
- 14

15 Abstract

We identified a growth hormone secretagogue-receptor (GHS-R) for ghrelin (GRLN) in 17 18 the Japanese quail, and examined relationship between its receptor distribution and the 19 effects of ghrelin on the gastrointestinal tract of the quail. GHS-R expression and 20 GRLN-induced response were also investigated in the chicken and compared with quail. 21 Several types of GHS-R, namely GHS-R1a-L, GHS-R1a-S, GHS-R1aV, GHS-R1b, 22 GHS-R1bV and GHS-R1tv-like receptor, were identified in quail cerebellum cDNA. 23 Amino acid sequence of quail GHS-R1a-L was 98% identical to that of chicken 24 GHS-R1a. GHS-R1a mRNA was expressed heterogeneously in the quail gastrointestinal 25 tract with a high expression level in the colon, moderate levels in the esophagus and 26 crop, and low levels in the proventriculus, gizzard and small intestine. The 27 region-specific expression pattern was almost the same as that in the chicken. Chicken 28 and quail GRLN caused contraction in the crop, proventriculus and colon of both the 29 quail and chicken, whereas the small intestine was less sensitive. However, the 30 contractile efficacy was more potent in the chicken than in the quail. Chicken motilin 31 (MTL), another gut peptide, structurally resemble to GRLN, caused marked contraction 32 in the small intestine of both the quail and chicken, and the region-specific effect of

MTL was opposite to that of GRLN. In conclusion, GRLN mainly induces the
contractile responses of the upper and lower gastrointestinal tract and MTL stimulates
motility of the middle intestine in both the quail and chicken. Regions in which GRLN
acts were consistent with the distribution of GHS-R1a mRNA, but the contractile

37 efficacy was different in the quail and chicken. These results suggest a species-specific

38 contribution of GRLN in the regulation of avian gastrointestinal contractility.

39

33

34

35

36

40 Key words: Chicken, Japanese quail, Ghrelin, Growth hormone secretagogue-receptor,

Gastrointestinal tract, Motilin 41

1. Introduction

45	Ghrelin (GRLN), a 28-amino-acid peptide in which the third serine residue
46	(Ser ³) has an <i>n</i> -octanoyl modification, is an endogenous ligand for the growth hormone
47	secretagogue-receptor (GHS-R) that was identified in rats and humans [1]. GRLN was
48	first identified as a growth hormone (GH)-releasing peptide that is mainly produced in
49	the stomach, but accumulating evidences indicate that GRLN is an important hormone
50	to regulate glucose metabolism, feeding, cardiovascular function and gastrointestinal
51	function (motility and gastric acid secretion) [2]. The multifunctional roles of GRLN are
52	supported by wide expression of mRNA and protein for GHS-R from the central
53	nervous system to several peripheral tissues [2-4]. In mammals, two GHS-R isoforms, a
54	functional receptor GHS-R1a, and an alternative splice variant, GHS-R1b (not
55	functional), have been identified [5].
56	GRLN has been identified in many species of non-mammalian vertebrates [6, 7].
57	In the chicken, GRLN is composed of 26 amino acids, and Ser ³ has been modified by
58	n-octanoic or n-decanoic acid [8]. Chicken GRLN shares about 50% total sequence
59	identity to human GRLN and 100% identity to the N-terminal region (Gly ¹ -Pro ⁷).
60	Chicken GRLN mRNA is predominantly expressed in the proventriculus [6, 8, 9]. Quail

61 GRLN structure, composed of 26 amino acid, shares 88% identity to chicken GRLN. 62 Quail GRLN mRNA and protein expression have been demonstrated in the proventriculus and oviducts [10]. 63 64 Distribution and characterization of chicken GHS-R have been already reported [11, 12]. Two types of GHS-R were found in the chicken: GHS-R1a is considered as a 65 functional receptor, and GHS-R1aV (GHS-R1c) is the splice variant where 16-amino 66 67 acids (48 bp) in transmembrane-6 are lacking. Sirotkin et al. [13] reported another splice variant, GHS-R1tv, that is specifically expressed in the gonad. GHS-R1a mRNA 68

69 expression has been detected in many central tissues (pituitary, hypothalamus, 70 telencephalon, cerebellum and brainstem) and peripheral tissues (ovary, kidney, 71 proventriculus, duodenum and colon) [11, 12]. The wide expression of GHS-R1a 72 mRNA in chicken organs suggests that GRLN exerts multiple physiological functions 73 through binding to the receptors, as has been observed in mammals.

In the chicken, GRLN stimulates the release of GH and corticosterone as an endocrine function [8]. GRLN also regulates appetite in the chicken, and intracerebroventricular (ICV) and intravenous (IV) injections of GRLN have been shown to suppress food intake [14-16]. An inhibitory effect of ICV injection of GRLN has also been observed in another bird, the Japanese quail [13]. Interestingly, the effect

79	observed in both birds is opposite to mammals and a teleost goldfish, in which GRLN
80	stimulates food intake [17, 18]. Birds are the only animals in which an inhibitory effect
81	of GRLN on food intake has been reported. Furthermore, it is interesting to note that
82	peripheral injection of GRLN shows two different actions in the Japanese quail: GRLN
83	in low dose stimulates food intake, whereas in high dose inhibits food intake [19]. Since
84	gastrointestinal motility is relevant to feeding [20] and plasma GRLN level has been
85	shown to be affected by feeding [2], it would be interesting to compare the effect of
86	GRLN on contractility of the gastrointestinal tract in the chicken and quail. We have
87	already shown that chicken GRLN caused region-specific contraction in the isolated
88	chicken gastrointestinal tract and was more effective in the upper and lower
89	gastrointestinal tract than in the middle intestine [21].
90	The main purpose of this study was to compare the effects of GRLN on
91	contractility of the gastrointestinal tract in the chicken and in the Japanese quail. We
92	first characterized GHS-R in the Japanese quail to examine its distribution in the
93	gastrointestinal tract. In addition, it was investigated that the relationships between

94 tissue distribution of GHS-R mRNA and mechanical responses to GRLN in different
95 parts of the quail and chicken gastrointestinal tract. Motilin (MTL) is another gut
96 peptide that is composed of 22 amino acids and is structurally related to GRLN [22, 23].

97	GHS-R is homologous to the MTL receptor (GPR38) in several points [22-24]. Thus,
98	chicken MTL-induced contraction was also examined in several regions of the
99	gastrointestinal tract of both the chicken and quail, and it was compared to the
100	GRLN-induced response.
101	
102	2. Materials and methods
103	All experiments were performed in accordance with Institutional Guidelines for
104	Animal Care at Rakuno Gakuen University.
105	
106	2.1. Animals and tissue preparations
107	Male white Leghorn chickens (3-6 weeks, Hokuren, Iwamizawa, Japan) and
108	male Japanese quails (5-9 weeks, Sankyo Lab Service, Sapporo, Japan) were used. Both
109	the chickens and quails were anaesthetized with diethyl ether, stunned, and bled to death.
110	The whole brain, esophagus, crop, proventriculus, gizzard, duodenum, jejunum, ileum
111	and colon were removed after a midline incision, and their luminal contents were
112	flushed out using ice-cold Krebs solution. The esophagus, crop, proventriculus and

114 direction (1 mm in width and 10 mm in length) were prepared. In the case of the small

113

7

colon were cut open longitudinally, and smooth muscle strips in the longitudinal

115	intestine (duodenum, jejunum and ileum), longitudinal muscle layers were peeled out
116	mechanically using a cotton-wool swab and fine tweezers. Isolated smooth muscle
117	strips were used for both contraction and molecular studies. Each whole gastrointestinal
118	tissue isolated was also used for molecular study.
119	
120	2.2. cDNA cloning of quail GHS-R
121	Total RNA was extracted by TRIzol reagent (Invitrogen, Grand Island, NY)
122	from the cerebrum and cerebellum of the Japanese quail and stored in RNAlater
123	(Ambion, Applied Biosystems, Foster City, CA). Full-length cDNA encoding quail
124	GHS-R was determined to amplify an approximately 690-bp fragment using
125	degenerated primers that were designed on the basis of a portion that is highly
126	conserved across GHS-Rs. Then 3'- or 5'-rapid amplification of cDNA end (RACE)
127	PCR was performed, based on the defined nucleotide sequence using the GeneRacer Kit
128	(Invitrogen).
129	Cerebellum total RNA (2 μ g) was reverse-transcribed with GeneRacer 3'-oligo
130	using a QuantiTect RT Kit (QIAGEN GmbH, Hilden, Germany) (final volume of 40 μ l).
131	PCR was performed with 2 μl of a template, a primer set (GHS-R-dSES1 [50 pmol/ μl]
132	and GHS-R-dANT1 [50 pmol/µl], Table 1) and <i>ExTaq</i> DNA polymerase (TaKaRa,

133	Shiga, Japan). The reaction conditions were 94°C for 2 min and subsequent 35 cycles of
134	94°C for 0.5 min, 53°C for 0.5 min and 72°C for 1 min, and final extension was 72°C
135	for 3 min. The amplified product was purified by a Wizard PCR preps DNA Purification
136	System (Promega, Madison, WI) and subjected to the second-round nested PCR. Nested
137	PCR was performed under the same conditions as those for primary PCR using another
138	primer set (GHS-R-dSES2 and GHS-R-dANT1, 50 pmol/µl each, Table 1), 2 µl
139	PCR-prepsed template and ExTaq DNA polymerase. The obtained product was
140	subcloned into the pCRII-TOPO vector (Invitrogen), and the nucleotide sequence of the
141	insert was determined by automated sequencing (Model 3130, Applied Biosystems)
142	according to protocol of the BigDye TM Terminator Cycle Sequencing Kit (Applied
143	Biosystems).
144	For 3'-RACE PCR, primary PCR was performed with the gene-specific primer
145	QL-GHSR-S1 (10 pmol/ μ l) or -S2 (10 pmol/ μ l) (Table 1) and 3'-primer using <i>HotSTAR</i>
146	Taq Plus mix (QIAGEN GmbH). The reaction conditions were 95°C for 5 min and
147	subsequent 35 cycles of 95°C for 0.5 min, 60°C for 0.5 min and 72°C for 1 min, and
148	final extension was 72°C for 3 min. After PCR preps of the amplified product, nested
149	PCR was performed with the gene-specific primer QL-GHSR-S3 (10 pmol/ μ l) or -S4
150	(10 pmol/ μ l) (Table 1) and 3'-nested primer under the same conditions as those for

primary PCR. Three bands appeared, and each band was excised from the gel,

152	subcloned, a	ind sequenced
-----	--------------	---------------

153	For 5'-RACE PCR, first-strand cDNAs were synthesized from 5 μ g cerebellum
154	total RNA with an anti-sense primer (QL-GHSR-AS1, 10 pmol/ μ l) or oligo dT ₁₂₋₁₈
155	primer (Invitrogen) using Superscript III reverse-transcriptase (Invitrogen). Primary
156	PCR was conducted using the gene-specific primer QL-GHSR-AS1 (10 pmol/ μ l) or
157	-AS4 (10 pmol/µl) (Table 1), 5'-primer and HotSTAR Taq Plus mix with amplification
158	conditions at 95°C for 5 min and subsequent 35 cycles of 95°C for 0.5 min, 58°C for 0.5
159	min and 72°C for 1.5 min, and final extension was 72°C for 3 min. After PCR preps of
160	the product, nested PCR was performed using QL-GHSR-AS2 (10 pmol/ μ l) or -AS3
161	(10 pmol/µl) (Table 1), 5'-nested primer and HotSTAR Taq Plus mix under the same
162	conditions as those for primary PCR. A specific product was obtained from templates
163	synthesized from both gene-specific anti-sense primers (QL-GHSR-AS2 or -AS3) (10
164	pmol/ μ l each) or oligo-dT ₁₂₋₁₈ primer. A large amount of the product originating from
165	oligo- dT_{12-18} primer was subcloned and sequenced.
166	

167 2.3. Partial cloning of quail GHS-R gene

168	For quantitative real-time PCR (qPCR) of quail GHS-R1a (acc#AB469019), we
169	used a primer set (QL-GHSR-S2 and QL-GHSR-AS2, 10 pmol/ μ l each, Table 1) to
170	obtain a 196-bp product. However, a band other than the 196-bp product appeared even
171	when total RNA was treated with DNase before reverse transcription. Thus, the
172	amplified products were cloned and the insert was sequenced. The product contained
173	partial sequences of quail GHS-R1a at the 5'- and 3'-sides, but unknown nucleotide
174	sequences have been inserted in the middle portion. We therefore conducted genomic
175	PCR using the same primer set with <i>PrimeSTAR</i> DNA polymerase (TaKaRa). Template
176	genomic DNA was obtained from the proventriculus using a Genomic Preps Cell and
177	Tissue DNA Isolation Kit (GE Healthcare, Buckinghamshire, England). The
178	amplification conditions were 98°C for 1 min and subsequent 35 cycles of 98°C for 20
179	sec, 55°C for 30 sec and 72°C for 20 sec. An approximately 2.5- kbp product was
180	subcloned into the pCRII-TOPO vector after overhang reaction with ExTaq DNA
181	polymerase (TaKaRa). For the sequencing, two sequencing primers (quailGHSR-int-s1:
182	5'-TCA GCC TTT GCT GAA CAG TGA CCA-3', and quailGHSR-int-AS1: 5'-ACA
183	AAG GCT ACA TGC AAT TTA TGG-3') were designed.
184	

186	We found two candidates for an open reading frame in quail GHS-R1a cDNA.
187	Two primer sets to amplify each GHS-R1a were designed: QL-GHSR-ful-s1 (10
188	pmol/µl) and QL-GHSR-ful-as1 (10 pmol/µl) for long-type GHS-R1a (GHS-R1a-L,
189	acc#AB469019); QL-GHSR-ful-s2 (10 pmol/µl) and QL-GHSR-ful-as2 (10 pmol/µl)
190	for short-type GHS-R1a (GHS-R1a-S, <u>acc#AB469019</u>) (Table 1). RT-PCR for
191	GHS-R1a-L was performed using the cerebellum cDNA as a template by HotSTAR Taq
192	Plus mix with reaction conditions at 95°C for 5 min and subsequent 35 cycles of 95°C
193	for 0.5 min, 55°C for 0.5 min and 72°C for 1 min, and final extension was 72°C for 3
194	min. For GHS-R1a-S, RT-PCR was performed by PrimeSTAR Max mix using diluted
195	plasmid cloned GHS-R1a-L as the template (TaKaRa) with reaction conditions at 98°C
196	for 10 sec and subsequent 30 cycles of 98°C for 10 sec, 57°C for 20 sec and 72°C for 10
197	sec. For GHS-R1b-L (acc#AB469022), RT-PCR was performed with the same
198	condition with GHS-R1a-L (acc#AB469019) using QL-GHSR-ful-s1 (10 pmol/ μ l) and
199	QL-GHSR-ful-as2 (10 pmol/ μ l) (Table 1). As a result, open reading frames of
200	GHS-R1b-L (acc#AB469022) and GHS-R1bV-L (acc#AB469021) were obtained. The
201	amplified cDNA was subcloned into the pcDNA3.1-V5-His-TOPO vector after
202	overhanging reaction if necessary. A vector showing correct orientation of the insert for
203	protein expression and the correct GHS-R sequence was subcultured. The plasmid

vector was isolated using a HiSpeed Plasmid Midi kit (QIAGEN GmbH) and was diluted to 1 μ g/ μ l for a transfection experiment.

206	Changes in intracellular Ca ²⁺ concentrations were measured using FLIPR ^{tetra}
207	(Molecular Devices, Menlo Park, CA). Human embryonic kidney 293 (HEK293) cells
208	were cultured in DMEM containing 10% fetal calf serum (FCS) at a density of 1×10^{6}
209	cells in a collagen-coated 10-cm dish for 24 h. An expression vector containing the open
210	reading frame of quail GHS-R1a-L (<u>acc#AB469019)</u> , GHS-R1a-S (<u>acc#AB469019)</u> ,
211	GHS-R1aV-L (acc#AB469020), GHS-R1b-L (acc#AB469022) and GHS-R1bV-L
212	(acc#AB469021) (2.5 μ g) was transfected with FuGENE6 (Roche Diagnostics,
213	Mannheim, Germany) according to the manufacturer's protocol. Twenty-four hours
214	after transfection, the cells were plated onto a poly-D-lysine (Sigma Chemical, St. Louis,
215	MO)-coated 96-well black plate (Corning Inc., Wilker Barre, PA) at a density of 3×10^4
216	cells per well. Twenty hours after plating, cultured medium was aspirated, and 100 μ l
217	fluorescent dye solution containing 4.4 μ M Fluo-4AM (Invitrogen) and 1% FCS,
218	0.045% pluronic acid (Invitrogen) in a working buffer (1×Hank's BSS [Invitrogen]-20
219	mM HEPES buffer containing 250 μ M probenecid [Sigma Chemical]) was loaded into
220	each well. The plate was incubated for 1 h at 37°C in a CO ₂ incubator, and the plate was
221	washed three times with a working buffer by an automatic washing machine, followed

222	by the addition of 100 μ l synthetic chicken GRLN 26-C8 [8], quail GRLN (Peptide
223	Institute Inc., Osaka, Japan), GHRP-6 (Bachem AG, Bubendorf, Switzerland) or
224	hexarelin (Phoenix Pharmaceutical Inc., Belmont, CA) at doses of 0.1, 1, 10, 30 and 100
225	nM in a working buffer containing 0.001% Triton X-100 using the automated FLIPR
226	system. Changes in intracellular Ca ²⁺ concentrations were measured by excitation at 488
227	nm and emission at 500-560 nm.
228	
229	2.5 Quantitative real-time PCR for chicken GHS-R1a
230	Quantitative real-time PCR (qPCR) for chicken GHS-R1a (acc#AB469019)
231	was performed using a LightCycler System (Roche Applied Science, Mannheim,
222	
232	Germany) and a QuantiTect SYBR Green PCR Kit (QIAGEN GmbH). Total RNA was

was performed using a LightCycler System (Roche Applied Science, Mannheim,
Germany) and a QuantiTect SYBR Green PCR Kit (QIAGEN GmbH). Total RNA was
extracted separately by TRIzol reagent from intact tissues and muscle layer specimens
of the esophagus, crop, proventriculus, gizzard, duodenum, jejunum, ileum and rectum
of three individuals that had been stored in RNAlater. First-strand DNA was synthesized
from 2 µg DNase-I (Invitrogen)-treated total RNA using SuperScript II
reverse-transcriptase (Invitrogen) with random primers. The resultant cDNA was
cleaned up with a QIAquick PCR Purification Kit (QIAGEN GmbH) for removing
factors that interfere with PCR reaction. A primer set (sense: 5'-GGG CCG TCT CCT

240	TCA TTA GTG-3' and an anti-sense: 5'-TTC CTC TTC CTC CTC CAC AGC-3') was
241	used. The expected amplicon size was 232 bp. The amplification conditions were 95°C
242	for 15 min, and subsequent 40 cycles at 94°C for 15 sec, 59°C for 30 sec and 72°C for
243	20 sec. The reaction mixture consisted of 1x master mix and 250 nM each of primer and
244	template (80 ng total RNA equivalent). For quantification of GHS-R mRNA copy
245	number, the pCR II-TOPO vector into which a 232-bp chicken GHS-R1a fragment had
246	been cloned was linearized by restriction with Xba-I, and serial dilutions of the
247	linearized plasmid from 1×10^6 to 1×10^3 were used to generate a linear regression line.

249 2.6. Quantitative real-time PCR for quail GHS-R1a

250 A QuantiFAST SYBR Green PCR Kit (QIAGEN GmbH) was used for qPCR 251 for quail GHS-R1a. Total RNA was extracted separately by TRIzol reagent from whole 252 tissues and the muscle layers and mucosal layers of the esophagus, crop, proventriculus, 253 gizzard, duodenum, jejunum, ileum, rectum and caecum of four individuals that had 254 been stored in RNAlater. First-strand cDNA was synthesized from 1 µg total RNA using 255 a QuantiTect RT Kit (QIAGEN GmbH). The resultant cDNA was directly used as a 256 template without purification. The primers used were a sense primer (5'-CAG ATC 257 GTG AAG ATG CTA GTT GTG-3') and an anti-sense primer (5'-GCT GAG GTA GAA GTG GAC AAA GGA-3'). The expected amplicon size was 168 bp. The amplification conditions were 95°C for 5 min and subsequent 35 cycles at 95°C for 10 sec and 60°C for 30 sec. The reaction mixture consisted of 1x master mix and 250 nM each of primer

and template (200 ng total RNA equivalent). For quantification of quail GHS-R1a
cDNA copy number, a linear regression line was generated by a serially diluted
linearlized quail GHS-R1a fragment (692 bp) obtained by 3'-RACE PCR cloned into
the pCRII vector.

265

258

259

260

266 2.7. Contraction study for gastrointestinal tracts of the chicken and quail

267 Smooth muscle strips from different parts of the gastrointestinal tract in the 268 chicken and quail were suspended vertically in an organ bath (5 ml) to measure 269 longitudinal muscle contraction. The organ bath contained warmed (37°C) Krebs 270 solution (mM): NaCl, 118; KCl, 4.75; MgSO₄, 1.2; KH₂PO₄, 1.2; CaCl₂, 2.5; NaHCO₂, 271 25 and glucose, 11.5 equilibrated with $95\%O_2 + 5\%CO_2$ (pH 7.4). Mechanical activity 272 of the preparations was measured with an isometric force transducer (SB-11T, Nihon 273 Kohden, Tokyo, Japan) and recorded on an ink-writing recorder. Initial load was set at 274 0.5 g for each preparation. The preparations were rinsed with Krebs solution every 15 275 min and allowed to equilibrate for 1 h. Prior to the addition of GRLN, each strip was

subjected to 3 or 4 stimulations with 50 mM KCl until a reproducible contraction was obtained. In order to examine whether GRLN causes contraction of gastrointestinal smooth muscle preparations, chicken GRLN 26-C8 and quail GRLN at 1 μ M were applied to an organ bath and the evoked responses were observed as previously described [21]. The amplitude of contractions among preparations was normalized by a standard contraction of 50 mM KCl and expressed as a relative contraction (%). Region-specific amplitudes of contraction by GRLN were compared between the

chicken and quail.

MTL-induced gastrointestinal muscle contraction was also compared between the chicken and quail. Chicken MTL (custom order in Peptide Institute Inc.) was applied cumulatively to an organ bath at doses of 0.1 nM to 1 μ M, and concentration-response curves were constructed as previously described [21]. The curves were analyzed by a sigmoid non-linear regression fit using Origin 7.0 (Origin Lab, USA) to determine the molar concentration of the agonist producing 50% (EC₅₀) of its maximal effect (E_{max}).

290

291 2.8. Peptides

292 Chicken GRLN 26-C8 was synthesized by Asubio Pharma. Co., Ltd. (Gunma,
293 Japan). Quail GRLN and chicken MTL were synthesized by Peptide Institute Inc.

18

294	(Osaka, Japan). Their purity was confirmed by a single peak of high-performance liquid
295	chromatography. Rat GRLN and human GRLN were purchased from Peptide Institute
296	Inc. Growth hormone releasing peptide-6 (GHRP-6) and hexarelin were purchased from
297	Bachem Co., Ltd. (Bubendorf, Switzerland) and Phoenix Pharmacol. Inc. (Belmont,
298	CA), respectively.
299	
300	2.9. Statistical analysis
301	The results are expressed as the means \pm S.E.M of more than four experiments.
302	The significance of differences between the values was determined at $P < 0.05$ using
303	paired or unpaired Student's t-test as appropriate for single comparisons or one-way
304	ANOVA followed by Bonferroni Dunnett's t test for multiple comparisons.
305	
306	3. Results
307	3.1. Identification of quail GHS-R
308	We isolated a 1308-bp cDNA encoding a GHS-R-like protein. Two ATG
309	initiation codons for translation were found at positions 54 and 75; the full-length cDNA
310	was composed of a 74- or a 53-bp 5'-untranslated region (UTR), an open reading frame
311	of 1065 or 1044 bp, which encodes a 354- or 347-amino acid protein, and a 190-bp

312	3'-UTR. Comparison of the long-type quail GHS-R-like protein with other GHS-R1a
313	sequences revealed that numerous consensus sequences for GHS-R1a are highly
314	conserved (Fig. 1). Chicken GHS-R1a showed 97% identity with the quail protein at the
315	nucleotide level and 98% identity at the amino acid level. Identity of the amino acid
316	sequence compared with other GHS-Rs was 72% for rat, 72% for zebrafish-1a, 68% for
317	zebrafish-2a, 60% for tilapia, 61% for seabream, 60% for pufferfish, and 60% for
318	rainbow trout. Therefore, quail GHS-R-like proteins were designated as quail GHS-R1a,
319	and its long- and short-type proteins were named GHS-R1a-L and GHS-R1a-S,
320	respectively (Fig. 2, <u>acc# AB469019</u>).
321	In the process for identifying the full-length GHS-R1a cDNA, a variant, in
322	which 48-bp nucleotides were deleted at 814-861 of the quail GHS-R1a-L, was also
323	identified. This deduced protein was considered to be an ortholog of chicken
324	GHS-R1aV [11, 12] (Fig. 2, acc# AB469020). In 3'-RACE PCR, we obtained two
325	cDNA fragments that have different nucleotide sequences in the 3'-end and encoded
326	different proteins from GHS-R1a: one was a 930-bp product and encoded a
327	309-amino-acid protein, and the other was a 938-bp product and encoded a
328	302-amino-acid protein. The former was considered to be a product in which an 8-bp
329	deletion had occurred from the latter sequence, resulting in a frame shift. These proteins

330	were considered to be orthologs of GHS-R1b, which has been reported in other animals.
331	We designated these two proteins as quail GHS-R1bV (acc # AB469021) and GHS-R1b
332	(acc # AB469022), respectively (Fig. 2). In fact, genomic PCR with QL-GHSR-S2 and
333	QL-GHSR-AS2 amplified a 2661-bp partial gene fragment (acc# AB490327, Fig. 3),
334	and the two GHS-R1b isoforms were found in the genomic DNA sequence. As shown
335	the nucleotide and amino acid sequences by green and by bold black letters,
336	respectively, open reading frame of the GHS-R1a sequence is present in the identified
337	gene, and intron sequence, which is shown by regular black letters divided the exon.
338	C-terminal GHS-R1b sequence, which is shown in <i>purple</i> and <i>red letters</i> , was found in
339	the portion extended from 5' splice site of the intron, while C-terminal GHS-R1bV
340	sequence, as shown in <i>purple</i> and <i>blue letters</i> , was generated by an underlined 8-bp
341	nucleotide deletion and resulted in frame shift (Fig.3).
342	We also found another variant of GHS-R in the process of qPCR validation. A
343	268-bp product was highly expressed in the proventriculus and gizzard and contained a
344	147-bp nucleotide sequence, which has not been found in the GHS-R1a sequence (data
345	not shown). Genomic PCR revealed that complex alternative splicing of the GHS-R
346	gene generated the product (acc# AB490327, Fig. 3): the nucleotide sequence is shown
347	by <i>italics</i> , the splice and boundary sites are shown by an arrow and #, ##, in which the

348

identical mark bounds, and deduced amino acid sequence from the generated nucleotide is shown in orange letters.

350

349

351 **3.2. Functional analyses of quail GHS-R**

352 The two identified quail GHS-R1a cDNAs were transiently expressed in HEK 353 293 cells, and the cells were treated with chicken GRLN, quail GRLN and two different 354 GHSs, GHRP-6 and hexarelin. Both quail GHS-R1a-L and GHS-R1a-S showed the 355 same degrees of responses to GRLN and GHSs at concentrations of 0.1 nM to 100 nM 356 (Figs. 4A and 4B). Although the maximum responses of the four ligands were almost 357 same, a marked difference was observed in the responsiveness. Chicken GRLN was 358 highly effective to the receptors. However, quail GRLN, GHRP-6, and hexarelin 359 showed similar effectiveness to the receptors (Fig. 4). On the other hand, the cells 360 transfected with quail GHS-R1aV-L, GHS-R1b-L and GHS-R1bV-L did not respond at 361 any doses of reagents tested (data not shown). 362 363 3.3. Expression of GHS-R1a mRNA in chicken and quail gastrointestinal tracts

- 364 Expression of GHS-R1a mRNA was examined in different regions of the quail 365 gastrointestinal tract, including the esophagus, crop, proventriculus, gizzard, duodenum,

382	3.4. Effects of GRLN on the contraction of different regions of chicken and quail
381	
380	chicken (R=0.92, P=0.001).
379	significant correlation in expression patterns of GHS-R1a mRNA in the quail and
378	mRNA in the corresponding gastrointestinal regions of both avian species revealed a
377	in the colon and esophagus was high. Comparison of the expression levels of GHS-R1a
376	was also more marked in the smooth muscle layer preparations, and mRNA expression
375	jejunum (Fig. 5B). The region-dependent heterogeneous expression of GHS-R1a mRNA
374	esophagus, crop, duodenum and ileum, and low in the proventriculus, gizzard and
373	GHS-R1a mRNA expression in whole tissues was highest in the colon, moderate in the
372	more marked in the smooth muscle layer preparations. On the other hand, chicken
371	ileum) (Fig. 5A). The region-related heterogeneous expression of GHS-R1a mRNA was
370	and duodenum, and low in other regions (crop, proventriculus, gizzard, jejunum and
369	mRNA expression in intact tissue was highest in the colon, moderate in the esophagus
368	as well as in smooth muscle layers without mucosa were measured. Quail GHS-R1a
367	of GHS-R1a mRNA, GHS-R1a mRNA expression levels in whole gastrointestinal tract
366	jejunum, ileum and colon. Since gastrointestinal mucosa possibly influences the amount

383 gastrointestinal tracts

384	Mechanical actions of the contractility of non-stimulated gastrointestinal
385	muscle strips were examined. Chicken GRLN (1 μ M) caused contraction of chicken
386	gastrointestinal smooth muscle strips in a region-specific manner as previously
387	described [21] (Fig. 6, upper). The contractile responses were strongest in the crop (70.5
388	\pm 5.3%, n=14) and colon (69.7 \pm 7%, n=5), moderate in the proventriculus (32.7 \pm 4.3%)
389	n=9), and weak in the small intestine (duodenum: $5.9 \pm 1.1\%$, n=5; jejunum: $19.0 \pm$
390	2.7% n=5; ileum: $10.8 \pm 2.0\%$, n=5) (Fig. 7). There was a significant positive
391	correlation between the GRLN-induced contraction and GHS-R1a mRNA expression in
392	different regions of the chicken gastrointestinal tract (R=0.91, P=0.005).
393	On the other hand, the contractile responses to quail GRLN (1 μ M) in the quail
394	gastrointestinal tract (especially, crop, proventriculus and colon) was small compared to
395	the responses to chicken GRLN in the chicken gastrointestinal tract (Figs. 6 and 7). The
396	relative amplitudes of contraction in the crop, proventriculus, duodenum, jejunum,
397	ileum and colon were $6.9 \pm 0.5\%$ (n=5), $7.6 \pm 0.7\%$ (n=9), $2.4 \pm 2.4\%$ (n=4), $3.1 \pm 2.6\%$
398	(n=4), $2.7 \pm 0.7\%$ (n=8) and $11.5 \pm 2.5\%$ (n=7), respectively (Fig. 7). Although a
399	significant correlation was not found between the contractile responses and quail
400	GHS-R1a mRNA expression (R=0.68, P=0.14), the contractile responses to GRLN in

402

the crop, proventriculus and colon were slightly larger than the responses in the small intestine, as has been observed in the chicken gastrointestinal tract.

- 403 To confirm contractile activity of quail GRLN, the response to quail GRLN (1
- 404μ M) was also investigated in the chicken crop. The amplitude of contraction induced by
- 405 quail GRLN (1 μ M, 57.4 ± 9.7%, n=5) was comparable with that by chicken GRLN (64
- 406 \pm 12%, n=5). Rat GRLN and human GRLN (1 μ M) were significantly less effective in
- 407 producing muscle contraction of the chicken crop ($14 \pm 3.7\%$, n=4 for rat GRLN, $12 \pm$
- 408 2.3%, n=4 for human GRLN). In the chicken proventriculus, quail GRLN ($31 \pm 6.5\%$,
- 409 n=6) and chicken GRLN $(27 \pm 6\%, n=6)$ caused similar degrees of contraction. In
- 410 contrast, the responses of the quail gastrointestinal tract to chicken GRLN were also
- 411 small, as was observed in the case of quail GRLN (crop: $10 \pm 1.7\%$, n=4;
- 412 proventiculus :7.2 \pm 1.1, n=6; colon: 8.5 \pm 1.5, n=4; duodenum: 3.2 \pm 1.3, n=3;
- 413 jejunum: $2.6 \pm 1.0\%$, n=4 and ileum: $3.6 \pm 0.8\%$, n=7).
- 414

415 **3.5. Effects of chicken MTL in chicken and quail gastrointestinal tracts**

416 Chicken MTL (0.1 nM -1 μ M) caused region-specific contractions in the 417 chicken gastrointestinal tract (Fig. 8). The contractile response was strong in the small 418 intestine (duodenum, jejunum and ileum, E_{max} = approximately 110%, EC₅₀ = 4-6 nM), 419 moderate in the proventriculus ($E_{max} = 35\%$, $EC_{50} = 30$ nM) and colon ($E_{max} = 33\%$, 420 $EC_{50} = 26$ nM), and weak in the crop ($E_{max} = 17\%$, EC_{50} was not determined). Chicken 421 MTL (0.1 nM -1 μ M) also caused contraction of the quail small intestine with a degree 422 of magnitude similar to that observed in the chicken ($EC_{50} = 2-4$ nM). The ranking order 423 of E_{max} was jejunum (83%) = duodenum (80%) > ileum (68%) > colon (42%) > crop 424 (28%) > proventriculus (17%) similar to the case of the chicken (Fig. 8).

425

426 **4. DISCUSSION**

427 In the present study, we identified GHS-R in the Japanese quail and examined 428 the extent of GHS-R1a mRNA distribution in Japanese quail gastrointestinal tract and 429 the effect of GRLN on the contractility of gastrointestinal tract. GHS-R1a expression 430 and GRLN-induced response were also investigated in the chicken and compared with 431 quail. Region-specific action of GRLN and region-related heterogeneous expression of 432 GHS-R1a mRNA in the gastrointestinal tract were demonstrated to be conserved in two 433 avian species, although there was marked difference in contractile efficacy (chicken > 434 quail). In addition, it is interesting that region-specific actions were observed for two 435 similar gut peptide hormones, GRLN and MTL, which have never seen in rodents 436 because they do not have endogenous MTL and MTL receptors [25, 26].

437	We isolated cDNA encoding a 354- or 347-amino-acid protein with numerous
438	consensus sequences to other GHS-R1a. Since the identified proteins showed higher
439	identity to zebrafish GHS-R1a than to zebrafish GHS-R2a, we designated these proteins
440	quail GHS-R1a, while the long-type and short-type receptors were named GHS-R1a-L
441	and GHS-R1a-S, respectively. It is convinced that these quail GHS-Rs show the highest
442	identity to chicken GHS-R1a [11, 12]. In the chicken, a protein homologous to quail
443	GHS-R1a-L is not translated from the cDNA because a frame shift occurs by an
444	insertion of one nucleotide in the chicken. Therefore, quail GHS-R1a-S would be an
445	ortholog of chicken GHS-R1a. Indeed, functional analysis has demonstrated that both
446	quail GHS-R1a-L and 1a-S act as functional receptors for quail GRLN in the Japanese
447	quail. At first it was assumed that quail GRLN was more effective to quail GHS-R than
448	was chicken GRLN, but quail GRLN was less sensitive than chicken GRLN in this
449	experiment. Since amino acid sequence of quail GRLN and chicken GRLN was
450	different in three positions (8, 17, 22) [6, 10], these differences affect the binding with
451	the quail GHS-R and the subsequent Ca ²⁺ responses by GRLNs. Although physiological
452	meaning of different responsiveness of chicken and quail GRLNs is not clear, it might
453	be suggested that quail is a low sensitive avian species to GRLN compared with
454	chicken.

455	We identified four splice variants of GHS-R, named GHS-R1aV, GHS-R1b,
456	GHS-R1bV and GHS-R1tv-like receptor. Chicken GHS-R1aV (or GHS-R1c termed by
457	Geelissen et al. [11]) is an alternative spliced variant of GHS-R1a that lacks
458	transmembrane domain-6 by deletion of 48-bp nucleotides [12]. In quail GHS-R1aV,
459	the same numbers of nucleotide have been deleted. There has not been any reports on
460	the function of GHS-R1aV, even in the chicken; but the present study showed for the
461	first time that GRLN or two GHSs do not increase intracellular Ca ²⁺ concentrations in
462	HEK 293 cells expressing quail GHS-R1aV, suggesting that GHS-R1aV is not involved
463	in GRLN signalling.
464	GHS-R1b is another splice variant that is known to be present in mammals and

0 465 fish, and it contains a part of the intron sequence of the GHS-R gene at the amino acid 466 sequence of the C-terminus [27, 28]. In this study, we identified for the first time two 467 GHS-R1b cDNAs encoding a 302- or 309-amino-acid protein in birds, which is 468 structurally different from GHS-R1aV. The two proteins were designated GHS-R1b and 469 1bV, respectively. Genomic PCR for quail GHS-R revealed the presence of those 470 nucleotide sequences, and GHS-R1bV is generated by a frame shift after an 8-bp 471 deletion. Although a similar GHS-R1b sequence is present in the chicken GHS-R gene, 472 it has not been yet determined whether the cDNA is generated [11, 12]. In this study, an increase in intracellular Ca²⁺ concentrations was not elicited in GHS-R1b-L or
GHS-R1bV-L expressing cells by GRLN or GHSs. Little is known about the function of
GHS-R1b in vertebrates, but it has been demonstrated that expression, translocation and
activity of GHS-R1a are modulated by the protein [28-30].

Furthermore, as previously reported [13], we identified a cDNA when validating real-time PCR that is considered as GHS-R1tv. We named the protein GHS-R1tv-like receptor. Genomic PCR revealed that the cDNA is generated by complex splicing of the GHS-R gene. In the present experiment, we predominantly detected the cDNA in the proventriculus and gizzard, but we did not examine its distribution of other tissues including gonad as shown in Sirotkin et al. [13]. Little is known about the function of GHS-R1tv in birds.

GRLN is synthesized and stored in the gastric mucosa cells and affects gastrointestinal motility [2]. However, expression of GHS-R1a mRNA in the gastrointestinal tract has only been investigated in humans thus far, and homogeneous expression along the digestive tract has been reported [31]. In this study, GHS-R1a mRNA was found to be heterogeneously expressed in the gastrointestinal tracts of the quail and chicken, and the expression patterns were similar in the two avian species, i.e., highest in the colon, moderate in the esophagus and crop, and low in the

491	proventriculus and small intestine. GHS-R1a mRNA expression was higher in muscle
492	layer preparations than in whole gastrointestinal preparations with mucosa, and the
493	expression was negligible in mucosa preparations, suggesting that GHS-R1a is mainly
494	located at smooth muscle layers including enteric nerves. This supports a previous
495	observation of myogenic and neurogenic contractile mechanisms of GRLN in the
496	chicken gastrointestinal tract [21]. These results suggest that GRLN acts as a gut
497	hormone to regulate contractility of the crop and colon in avian species.
498	GRLN-induced contraction was considerably weak in the quail compared with
499	that observed in the chicken gastrointestinal tract, despite the fact that similar amounts
500	of GHS-R1a mRNA were expressed. Similar discrepancy between GHS-R mRNA
501	expression level and contractile function has been reported in humans: GHS-R mRNA
502	and protein are expressed in the stomach and colon [31], but GRLN is ineffective in
503	causing mechanical responses and in modifying neural contraction [32]. Although the
504	underlying mechanisms are not known at present, the following speculations may
505	account for the discrepant mechanical responses to GRLN in the chicken and quail: 1)
506	GHS-R1a mRNA is not translated in GHS-R1a protein in the quail, 2) most of
507	GHS-R1a in the quail are not functional for eliciting the contractile responses, and 3)
508	distribution of GHS-R1a in smooth muscles and neural components differs in the

509	chicken and quail. It was firstly assumed that GRLN stimulates gastrointestinal
510	motility more potently in the quail than that observed in the chicken, because strong
511	gastrointestinal contraction would be needed in the quail after increase of food intake
512	by peripheral injection of GRLN [19]. However, the results obtained in the present
513	study were opposite. To obtain a better understanding of the functional relevance of
514	GRLN for food intake and gastrointestinal motility, the effects of GRLN in other bird
515	species must be examined.
516	Motilin is a GRLN-related peptide, and it has been shown that the MTL
517	receptor and GHS-R would have been derived from a common ancestral gene [23, 24].
518	Chicken MTL receptor was highly expressed in the proventriculus and duodenum [24],
519	although homogenous expression of MTL receptor mRNA in the human
520	gastrointestinal tract has been reported [31]. In the present study, chicken
521	MTL-induced contraction was strong in the small intestine including the duodenum,
522	jejunum and ileum, moderate in the proventriculus and colon, and weak in the crop of
523	both the quail and chicken. This is the first report on a region-specific common
524	contractile response of MTL in gastrointestinal tract of avian species. In the chicken,
525	MTL has been suggested to be a mediator of rhythmic oscillating complexes of the
526	small intestine [33]. It is notable that GRLN and a related peptide, MTL, separately

527	regulate gastrointestinal motility in a region-specific manner in these birds: GRLN
528	regulates motility of the upper (crop) and lower (colon) guts, and MTL regulates
529	motility of the middle gut (small intestine). A recent immunohistochemical study
530	demonstrated that GRLN and MTL are simultaneously secreted from a prominent
531	endocrine cell population in the human small intestine [34]. Therefore, it is highly
532	possible that GRLN and MTL orchestrate gastrointestinal motility in the chicken and
533	quail, like in humans. An avian species, especially the chicken, is a good animal model
534	to examine the interaction of these two peptides, because rodents (rats and mice),
535	MTL-deficient species [25, 26], are insensitive to MTL.
536	In summary, we identified several types of GHS-R in the Japanese quail.
537	Distribution of GHS-R1a mRNA in the gastrointestinal tract coincided well with the
538	muscle contraction properties, which are strong in the esophagus and colon, in both the
539	quail and chicken. However, the contractile responses to GRLN were weak in the quail
540	compared to those in the chicken even though peripheral exogenous GRLN stimulates
541	food intake in the quail. It is necessary to examine the relationship between food intake
542	and gastrointestinal motility induced by GRLN. MTL stimulated muscle contraction in
543	small intestinal regions including the duodenum, jejunum and ileum, in which the effect
544	of GRLN is weak. These region-specific effects of GRLN and MTL are unique in avian

species, and different contractile responses in the chicken and quail reflect speciesdifference in the regulation of gastrointestinal motility by GRLN.

547

548	ACKNOV	VLEDGN	MENTS
-----	--------	--------	-------

549 We thank Dr. Yasuo Kitajima, Dr. Masaru Matsumoto and Dr. Yoshiharu

550 Minamitake, Asbio Pharma Inc., for synthesis of chicken GRLN. We also thank Mrs.

551 Hideko Iida and Mrs. Azumi Ooyama for skillful technical assistance. This work was

supported in part by a Grant-in-Aid for Scientific Research from MEXT of Japan to

553 HKai, KKan and MM, the Program for Promotion of Fundamental Studies in Health

554 Sciences of the National Institute of Biomedical Innovation (NIBIO), and the Takeda

555 Scientific Foundation of Japan to KKan and MM.

556

557

558

- 559
- 560

561

563 **References**

564

- Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a
 growth-hormone-releasing acylated peptide from stomach. Nature 1999;
 402:656-60.
- 568 2. Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev
 569 2005;85:495-522.
- 570 3. Gnanapavan S, Kola B, Bustin SA, Morris DG, McGee P, Fairclough P,
 571 Bhattacharya S, Carpenter R, Grossman AB, Korbonits M. The tissue distribution
 572 of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin

573	Endocrinol Metab 2002;87:2988-91.
-----	-----------------------------------

- 4. Papotti M, Ghe C, Cassoni P, Catapano F, Deghenghi R, Ghigo E, Muccioli G.
- 575 Growth hormone secretagogue binding sites in peripheral human tissues. J Clin
- 576 Endocrinol Metab 2000;85:3803-7.
- 577 5. Davenport AP, Bonner TI, Foord SM, Harmar AJ, Neubig RR, Pin JP, Spedding M,
- 578 Kojima M, Kangawa K. Intenational Union of Pharmacology LVI. Ghrelin receptor
- 579 nomenclature, distribution, and function. Pharmacol Rev 2005;57:541-6.
- 580 6. Kaiya H, Darras VM, Kangawa K. Ghrelin in birds; its structure, distribution and

function. J. Poult Sci 2007;44:1-18.

- 582 7. Kaiya H, Miyazato M, Kangawa K, Peter RE, Unniappan S. Ghrelin: A
 583 multifunctional hormone in non-mammalian vertebrates. Comp Biochem Physiol A
 584 2008;149:109-28.
- 585 8. Kaiya H, Van Der Geyten S, Kojima M, Hosoda H, Kitajima Y, Matsumoto M,
- 586 Geelissen S, Darras VM, Kangawa K. Chicken ghrelin: purification, cDNA cloning,
- and biological activity. Endocrinology 2002;143:3454-63.
- 9. Richards MP, Poch SM, McMurtry JP. Characterization of turkey and chicken
 ghrelin genes, and regulation of ghrelin and ghrelin receptor mRNA levels in
 broiler chickens. Gen Comp Endocrinol 2006;145:298-310.
- 591 10. Yoshimura Y, Nagano K, Subedi K, Kaiya K. Identification of Immunoreactive
- 592 Ghrelin and its mRNA in the Oviduct of Laying Japanese Quail, *Coturnix japonica*.
- 593 J. Poult Sci 2005;42:291-300.
- 594 11. Geelissen S, Beck IM, Darras VM, Kühn E, van der Geyten S. Distribution and
- regulation of chicken growth hormone secretagogue receptor isoforms. Gen Comp
- 596 Endocrinol 2003;134:167-74.
- 597 12. Tanaka M, Miyazaki T, Yamamoto I, Nakai N, Ohta Y, Tsushima N, Wakita M,
- 598 Shimada K. Molecular characterization of chicken growth hormone secretagogue

receptor gene. Gen Comp Endocrinol 2003;134:198-202.

- 600 13. Sirotkin AV, Grossmann R, María-Peon MT, Roa J, Tena-Sempere M, Klein S.
- 601 Novel expression and functional role of ghrelin in chicken ovary. Mol Cell
- 602 Endocrinol 2006;257-258:15-25.
- 603 14. Furuse M, Tachibana T, Ohgushi A, Ando R, Yoshimatsu T, Denbow DM.
- 604 Intracerebroventricular injection of ghrelin and growth hormone releasing factor
- 605 inhibits food intake in neonatal chicks. Neuroscience Lett 2001;301:123-6.
- 606 15. Saito ES, Kaiya H, Takagi T, Yamasaki I, Denbow DM, Kangawa K, Furuse M.
- 607 Chicken ghrelin and growth hormone-releasing peptide-2 inhibit food intake of 608 neonatal chicks. Eur J Pharmacol 2002;453:75-9.
- 609 16. Geelissen SM, Swennen Q, Geyten SV, Kühn ER, Kaiya H, Kangawa K,
- 610 Decuypere E, Buyse J, Darras VM. Peripheral ghrelin reduces food intake and
- 611 respiratory quotient in chicken. Domest Anim Endocrinology 2006;30:108-16.
- 612 17. Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura
- 613 S. A role for ghrelin in the central regulation of feeding. Nature. 2001;409:194-8.
- 614 18. Matsuda K, Miura T, Kaiya H, Maruyama K, Shimakura S, Uchiyama M, Kangawa
- 615 K, Shioda S. Regulation of food intake by acyl and des-acyl ghrelins in the goldfish.
- 616 Peptides 2006;27:2321-5.

617	19.	Shousha S, Nakahara K, Kojima M, Miyazato M, Hosoda H, Kangawa K,
618		Murakami N. Different effects of peripheral and central ghrelin on regulation of
619		food intake in Japanese quail. Gen Comp Endocrinol 2005;141:178-83.
620	20.	Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M. Ghrelin induces
621		fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol
622		2003;550:227-40.
623	21.	Kitazawa T, Kaiya H, Taneike T. Contractile effects of ghrelin-related peptides on
624		the chicken gastrointestinal tract in vitro. Peptides 2007;28:617-24.
625	22.	Asakawa A, Inui A, Kaga T., Yuzuriha H, Nagata T, Ueno N, Makino S, Fujimiya
626		M, Niijima A, Masayuki A, Fujino M, Kasuga M. Ghrelin is an appetite-stimulatory
627		signal from stomach with structural resemblance to motilin. Gastroenterology
628		2001;120:337-45.
629	23.	Peeters TL. Ghrelin: a new player in the control of gastrointestinal functions. Gut
630		2005;54:1638-49.
631	24.	Yamamoto I, Kaiya H, Tsutsui C, Sakai T, Tsukada A, Miyazato M, Tanaka M.
632		Primary structure, tissue distribution, and biological activity of chicken motilin
633		receptor. Gen Comp Endocrinol 2008;156:509-14.
634	25.	Peeters TL, Aerssens J, De Smet B, Mitselos A, Thielemans L, Coulie B,

635		Depoortere I. The mouse is a natural knock-out for motilin and for the motilin
636		receptor. Functionally they have been replaced by ghrelin. Neurogastroenterology
637		and motility 2004;16:687.
638	26.	Aerssens J, Depoortere I, Thielemans L, Mitselos A, Coulie B, Peeters TL. The rat
639		lacks functional genes for motilin and for the motilin receptor.
640		Neurogastroenterology and motility 2004;16:841.
641	27.	Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI,
642		Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu
643		KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R,
644		Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R,
645		Griffin PR, DeMartino Ja, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH.
646		A receptor in pituitary and hypothalamus that functions in growth hormone release.
647		Science 1996;273:974-7.
648	28.	Chen CB, Cheng CH. Identification and functional characterization of two
649		alternatively spliced growth hormone secretagogue receptor transcripts from the
650		pituitary of black seabream, Acanthopagrus schlegeli. Mol Cell Endocrinol
651		2004;214:81-95.

652 29. Chu KM, Chow KB, Leung PK, Lau PN, Chan CB, Cheng CH, Wise H.

653		Over-expression of the truncated ghrelin receptor polypeptide attenuates the
654		constitutive activation of phosphatidylinositol-specific phospholipase C by ghrelin
655		receptors but has no effect on ghrelin-stimulated extracellular signal-regulated
656		kinase 1/2 activity. Int J Biochem Cell Biol 2007;39:752-64.
657	30.	Leung PK, Chow KB, Lau PN, Chu KM, Chan CB, Cheng CH, Wise H. The
658		truncated ghrelin receptor polypeptide (GHS-R1b) acts as a dominant-negative
659		mutant of the ghrelin receptor. Cell Signal 2007;19:1011-22.
660	31.	Takeshita E, Matsuura B, Dong M, Miller LJ, Matsui H, Onji M. Molecular
661		characterization and distribution of motilin family receptors in the human
662		gastrointestinal tract. J Gastroenterol 2006;41:223-30.
663	32.	Dass NB, Munonyara M, Bassil AK, Hervieu GJ, Osbourne S, Corcoran S, Morgan
664		M, Sanger GJ. Growth hormone secretagogue receptors in rat and human
665		gastrointestinal tract and the effects of ghrelin. Neuroscience 2003;120:443-53.
666	33.	Rodriguez-Sinovas A, Jimenez M, De Clercq P, Peeters TL, Vergara P. Rhythmic
667		oscillating complexes in gastrointestinal tract of chicken: a role for motilin. Am J
668		Physiol 1997;272:G916-22.
669	34.	Wierup N, Bjorkqvist M, Wesrom B, Pierzynowski S, Sundler F, Sjolund K.
670		Ghrelin and motilin are cosecreted from a prominent endocrine cell population in

671	the small intestine. J Clin Endocrinol Metabol 2007;92:3573-81.
672	
673	
674	
675	
676	
677	
678	
679	
680	
681	
682	
683	
684	
685	
686	
687	
688	

GHS-R-dSES1: AAY YTY TAY CTS TSY AGY ATG GCGHS-R-dSES2: GAY CTS CTS ATY TTY CTS TGY ATG CCGHS-R-dANT1: TTR ATS GCN GCR CTS AGR TAR AA

QL-GHSR-S1 : TCG AGC ACG AGA ACG GCA CCA ACC QL-GHSR-S2 : GGT GTG GAT CTC CAG CAT CTT CTT QL-GHSR-S3 : GGC ACC AAC CCG CTG AGC ACC AAC QL-GHSR-S4 : ATC TTC TTT TTC TTG CCT GTC TTC

QL-GHSR-AS1 : GCT GAG GTA GAA GTG GAC AAA GGA QL-GHSR-AS2 : AGG CAA CCA GCA GAG TAT GAA AGC QL-GHSR-AS3 : TTA ATC CAA GTG TTG ATT GCT ACC QL-GHSR-AS4 : CAC AAC TAA AAC AAA AAA CAG CAG

QL-GHSR-ful-s1 : ATG CGC AGC CGC AGC GGC ACG ATG QL-GHSR-ful-s2 : ATG CGG GAG GGG AGC GCG GAG AAC QL-GHSR-ful-as1 : TCA TGT GGC GAC GGT GGG TTC TGT QL-GHSR-ful-as2 : TCA AAG GAA AAG GAA GAG TTG TTC

689

690

692 Figure legends

Fig. 1. Multiple amino acid sequence comparison of GHS-R1a and identified quail
GHS-R1a-like protein. *Asterisks* indicate identical amino acids across all species. *Dots*indicate more than half of identical amino acids across all species. Amino acid
sequences are available from the DDBJ/EMBL/GenBank databases: quail (<u>AB469019</u>),
chicken (<u>AB095995</u>), rat (<u>U94321</u>), zebrafish1a (<u>XM001335981</u>), zebrafish2a
(<u>XM001340372</u>), tilapia (<u>AB361053</u>), seabream (<u>AY151040</u>), pufferfish (<u>AF082209</u>)
and rainbow trout (DQTA/LN, <u>AB362479</u> and ERAT/IS, <u>AB362480</u>),

Fig. 2. Deduced amino acid sequences of identified quail GHS-R isoforms. *Asterisks*indicate identical amino acids across all species. *Dots* indicate more than half of
identical amino acids across all species. *Italic letters* indicate amino acid sequence
originated from the intron. *Italic bold* letters show different part of sequence from
GHS-R1b-L. The nucleotide sequence was deposited in the DDBJ/EMBL/GenBank[™]
databases with the accession numbers <u>AB469019</u> for 1a-L and 1a-S, <u>AB469020</u> for
1aV-L, <u>AB469021</u> for 1bV-L and <u>AB469022</u> for 1b-L.

710	Fig. 3. Partial nucleotide sequence and deduced amino acid sequence of quail
711	GHS-R gene including an intron. Genomic PCR was performed with QL-GHSR-S2
712	and QL-GHSR-AS2, and a 2661-bp fragment was obtained. Represented nucleotide
713	number is consecutive from the cDNA (AB469019). The nucleotide sequence has been
714	deposited in the DDBJ/EMBL/GenBank TM databases with the accession number
715	AB490327. Detail of this figure was indicated in the Results.
716	
717	Fig. 4. Functional analysis of quail GHS-R1a.

718 Changes in intracellular Ca^{2+} concentrations were examined in human embryonic

719 kidney (HEK) 293 cells that were transfected with quail GHS-R1a-L (A) and 1a-S (B).

720 These cells were treated with chicken ghrelin (\bullet), quail ghrelin (\blacksquare), GHRP-6 (\blacktriangle) and

hexarelin (▼) at concentrations of 0.1, 1, 10, 30 and 100 nM. Values represent the means

722 \pm SEM of triplicate examinations.

qRT-PCR. Each column represents the mean \pm SEM of triplicate examinations.

729

730	Fig. 6. Representative contractile responses of gastrointestinal preparations to
731	GRLN. Crop, proventriculus, duodenum, jejunum, ileum and colon strips isolated from
732	the chicken and quail were used for the study. Effects of 50 mM KCl (50 K, \blacktriangle) and
733	chicken GRLN (1 μ M, \bullet) or quail GRLN (1 μ M, \bullet) were examined in the chicken
734	preparations (upper) and quail preparations (lower).
735	
736	Fig. 7. Comparison of GRLN-induced contractions in the chicken and quail.
737	Mechanical responses to chicken GRLN (1 μ M) and quail GRLN (1 μ M) in different

regions of the chicken (\blacksquare) and quail (\Box) gastrointestinal tracts were normalized by the

739 contraction induced by 50 mM KCl, and the relative contractions are represented.

740 GRLN-induced contraction was more conspicuous in the chicken preparations. Each

741 column represents the mean \pm SEM of more than 4 examinations.

742

Fig. 8. Comparison of maximum responses of MTL-induced contraction in the gastrointestinal tracts of the chicken and quail. Chicken MTL was applied to different regions of chicken (\blacksquare) and quail (\Box) gastrointestinal tracts cumulatively, and

- the maximum contraction was normalized by the contraction induced by 50 mM KCl.
- Each column represents the means \pm SEM of more than 4 examinations.

		TM1	
Quail	1	MR-SRSGTMRE-G-SAE-NR-TG-G-ES-PLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRF	59
Chicken	1	MRE-G-SSE-NR-TG-G-ES-PLRLFPAPVLTGITVACVLLFVVGVLGNLMTMLVVSRF	52
Rat	1	MWNATPSEEPEPNVTLDLDWDASPGNDSLPDEL-LPLFPAPLLAGVTATCVALFVVGISGNLLTMLVVSRF	70
Zebrafishla	1	MPTWTNRSNCSFNCSWDDNATYWGIEQ-PVNIFPIPVLTGVTVTCVLFFFVGVTGNLMTILVVTKY	65
Zebrafish2a	1	MTNWTNVSICPLSITLCA-ENIMDSNATSEDEYPVHLFPVPILTGITVTCSFLFLVGIAGNLLTILVVTKY	70
Seabream	1	MPSWP-DL-ECL-RENCIWEEINNIISERLEGEPENNIISIPLLIAIIVACILLELIGVAGNVMIILVVSKI MPSWP-NLSECL-SLNCSWEETENATEKEDLGLPPLNYYSIPLLTGITIACTLLELVGVAGNVMIILVVSKY	70
Pufferfish	1	MPSC-PG-L-SPNCSWEGS-H-NGTAGLELPPLNYYSIPLLAVITVACTVLFTVGVVGNVMTILVVSRY	64
RainbowDQTA	1	MRSWPNR-TDCLSPVNCSWEDNYWNYYFNGSYQGPVPPENLFPIPVLMGITITCTLLFLAGVAGNVMTILVVSKY	74
RainbowERAT	1	MRSWPNR-TDCLSPVNCSWEENYWNYYFNGSYRGPVPPENLFPIPVLMGITITCALLFLAGVTGNVMTILVVSKY	74
Quail	60	RDMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWOYRPWNFGDLLCKLFOFISESCTYSTILNITALSVERYVAIC	134
Chicken	53	RDMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTILNITALSVERYVAIC	127
Rat	71	RELRTTTNLYLSSMAFSDLLIFLCMPLDLVRLWQYRPWNFGDLLCKLFQFVSESCTYATVLTITALSVERYFAIC	145
Zebrafishla	66	KDMRTTTNLYLSSMAFSDLLIFLCMPLDLYRIWRYRPWNFGNILCKLFQFVSECCTYSTILNITALSVERYFAIC	140
Zebrafish2a	71	KDMRTTTNLYLCSMALSDLLIFLCMPLDLYRVWRYRPWNFGDELCKLFQFVSESCTYSTILNITALSVERYFAIC	145
Tilapia	71	RDMRTTTNLYLCSMAVSDLLIFLCMPLDLYRMWRYRPWRFGDALCKLFQFVSESSTYSTILSITALSVERYLAIC	145
Seabream	65	RUMRITINLYLCSMAVSDLLIFLCMPLDLYRMWRYRPWRFGDALCKLEQEVSESCHYSTILSITALSVERYLAIC	130
RainbowDOTA	75	RDMRTTMLVLCSMAVSDLLIFLCMPPDVVRLWKYRPWIFGDTFCKLFOFVSECOTYSTILNITALSVERYLAIC	149
RainbowERAT	75	RDMRTTTNLYLCSMAVSDLLIFLCMPPDVYRLWKYRPWIFGDTFCKLFQFVSECCTYSTILNITALSVERYLAIC	149
		····*****.***.*** ****.***.***.* * **** ********	
Ousil	125		1.01
Chicken	128	FPERAKVIIIRKKVKLVILILWAVSFISAGPIFVLVGVEHENGINPLSINECRATEI	184
Rat	146	FPLRAKVVVTKGRVKLVILVIWAVAFCSAGPIFVLVGVEHENGTDPRDTNECRATEF	202
Zebrafishla	141	FPLRAKVVVTKGRVRGVILVLWIVSFFSAGPVFVLVGVEHENGTNSWDTNECKATEY	197
Zebrafish2a	146	FPLRAKVIVTRGRVKGVILLLWTVALCSAGPIFILVGVEHENGTNAWETNECKATEY	202
Tilapia	146	FPLRAKALVTKRRVRALICLLWTVSLLSAGPVFVMVGVEQD-TMGPLNFSSWMNETNLFLETEDTRECKMTHY	217
Seabream	146	FPLRAKALVTKRRVRALILLLWTVSLLSAGPVFVMVGVERD-SMWPGNL-SWVGMNGTGFFPEEGDTRECKMTHY	218
Pufferfish	140	FPLRAKALVTKRRVRALILLLWTVSLLSAGPVFVMVGVEKDSIMFP-NSSD-LN-ESSWPL-EAVDTRECRMTQY	210
RainbowDQTA	150	FPLKAKKLVTKKRVRALILFLWLVSLLSAGPVFVLVGVEHETRPAAGNS-VTAGGAEGQTE-IDTSECKPTQY	220
Nalidowenni	100	****** ** **. **	220
		TM5 TM6	
Quail	192	AIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRR-KRKNIGPSTVIRDKNNKQTVKMLVVVVFAFILCWL	265
Chicken	185	AIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRR-KRKNIGPSTIIRDKNNKQTVKMLVVVVFAFILCWL	258
Rat	203	AVRSGLLTVMVWVSSVFFFLPVFCLTVLYSLIGRKLWRRRGDAAVGASLRDQNHKQTVKMLAVVVFAFILCWL	275
Zebrafishla	198	AIRSGLLTIMVWVSSIFFFLPVFCLTVLYSLIGRKLWKR-KRETIGENASSRDKSNRQTVKMLAVVVFAFVLCWL	271
Tilania	203	ALKSGLELMUVWVSSVEFELEVILGLIVLISLIGKREWKK-KENEVG-FISSKDKSNKGIVKMERVVVLAEVLCWL AVOSGLMCAMVWLSSVEFEMPVFCLTVLYSLIGERLWORHRETNMSNRVSHRDKSNROTIKMLVVVLAEVLCWL	292
Seabream	219	AVESGLMGAMVWLSSVFFFMPVFCLTVLYSLIGRRLWORHRETNINSRVAHREKSNROTIKMLVVVVLAFVLCWL	293
Pufferfish	211	AVESGLMEAMVWLSSVFFFMPVFCLTVLYGLIGRRLWLRHRETTINSRVAYRDKSNRQTIKMLVVVVLAFVLCWL	285
RainbowDQTA	221	AVESGLLAAMALVSSVFFFLPVFCLTVVYSLIGRRLWKRRRENNIGANVAHRDKSNRQTVKMLAVVVFAFVLCWL	295
RainbowERAT	221	AVESGLLAAMALVSSVFFFLPVFCLTVVYSLIGRRLWKRRRENSIGANVAHRDKSNRQTVKMLAVVVFAFVLCWL	295
		*. ***. * **.***.**.****************	
Ounil	266		227
Chicken	259	PEHVGRILEBRSFEAGSLEIAVISQICNLISEVLEYLSAAINPILYNIMSKKYRVAACRLEGLKALPKKRL-S	330
Rat	276	PFHVGRYLFBKSFEPGSLEIAQISQYCNLVSFVLFYLSAAINPILYNIMSKKYRVAVFKLLGFESFSQRKL-S	347
Zebrafishla	272	PFHVGRYLISKSTEMGSPVMSIISHYCNLISFVLFYLSAAINPILYNIMSKKYRMAACKLFGLRNIPRRS-TS	343
Zebrafish2a	276	PFHVGRYLVSKSSEANSPVISQISEYCNLVSFVLFYLSAAINPILYNIMSKKFRSAACKLFRVKRAPGRSLQS	348
Tilapia	293	PFHVGRYLQFRSLDAPSPLLSLLSEYCSLVSVVLFYLSAAINPILYNTMSWKYRGAAARLFGLTDSLPPRGRTAS	367
Seabream	294	PFHVGRYLQFRSLDAPSPLLSLLSEYCSLVSVVLFYLSAAINPILYNIMSWKYRGAAARLFGLIDSQPPRGRTAS	368
Pufferfish	286	PFHVGRYLQFRSLDAPSPLLSLLSEYCSLVSVVLFYLSAAINPILYNTMSWKYRGAVARLFGVSDSPPQRGRTAS	360
RainbowDQTA	296	PFHLHRYLMSHSSEGSSPLWSLFTQYCSLVSTVLFYLSAAINPVLYNTMSRKYRSAAQLFGLQETQPPRGRTAS	370
RATIDOWERRI	290	****** * * ** *.* *********	570
0	0.00		0.F
Quall Chicker	338	STRUDSSRWITEPTVAT	354
Rat	348	TLKDESSRAWTKSSINT	364
Zebrafishla	344	VAKGESSPCWTESTASL	360
Zebrafish2a	349	IVNAESVSVWNEYSWST	365
Tilapia	368	TVKGDGSNGWTESTISF	384
Seabream	369	TVKGDGSNGWTESTISF	385
Pufferfish	361	TVKMDGWTESTVSF	374
RainbowDQTA	371	TVKGESSPAWTESTVSL	387
KainbowERAT	371	TVKGESSPAWTESTVSL *	387
		••• •• ••••	

Quail	laL	1	MRSRSGTMREGSAENRTGGESPLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRFR	60
Quail	las	1	MREGSAENRTGGESPLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRFR	53
Quail	laV-L	1	MRSRSGTMREGSAENRTGGESPLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRFR	60
Quail	1b-L	1	MRSRSGTMREGSAENRTGGESPLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRFR	60
Quail	1bV-L	1	MRSRSGTMREGSAENRTGGESPLRLFPAPVLTGITVACVLLFVVGVLGNMMTMLVVSRFR	60
Quail	laL	61	DMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTIL	120
Quail	1aS	54	DMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTIL	113
Quail	laV-L	61	DMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTIL	120
Quail	1b-L	61	DMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTIL	120
Quail	1bV-L	61	DMRTTTNFYLSSMAFSDLLIFLCMPLDLFRLWQYRPWNFGDLLCKLFQFISESCTYSTIL ************************************	120
Quail	laL	121	NITALSVERYVAICFPLRAKVIITKRKVKLVILILWAISFISAGPIFVLVGVEHENGTNP	180
Quail	1aS	114	NITALSVERYVAICFPLRAKVIITKRKVKLVILILWAISFISAGPIFVLVGVEHENGTNP	173
Quail	laV-L	121	NITALSVERYVAICFPLRAKVIITKRKVKLVILILWAISFISAGPIFVLVGVEHENGTNP	180
Quail	1b-L	121	NITALSVERYVAICFPLRAKVIITKRKVKLVILILWAISFISAGPIFVLVGVEHENGTNP	180
Quail	1bV-L	121	NITALSVERYVAICFPLRAKVIITKRKVKLVILILWAISFISAGPIFVLVGVEHENGTNP	180

Quail	laL	181	LSTNECRATEYAIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRRKRKNIGPSTV	240
Quail	1aS	174	LSTNECRATEYAIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRRKRKNIGPSTV	233
Quail	laV-L	181	LSTNECRATEYAIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRRKRKNIGPSTV	240
Quail	1b-L	181	LSTNECRATEYAIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRRKRKNIGPSTV	240
Quail	1bV-L	181	LSTNECRATEYAIRSGLLTIMVWISSIFFFLPVFCLTVLYSLIGRKLWRRKRKNIGPSTV	240

Quail	laL	241	IRDKNNKQTVKMLVVVVFAFILCWLPFHVGRYLFSKSFEAGSLEIAVISQYCNLVSFVLF	300
Quail	1aS	234	IRDKNNKQTVKMLVVVVFAFILCWLPFHVGRYLFSKSFEAGSLEIAVISQYCNLVSFVLF	293
Quail	laV-L	241	IRDKNNKQTVKMLGRYLFSKSFEAGSLEIAVISQYCNLVSFVLF	284
Quail	lb-L	241	${\tt IRDKNNKQTVKML}{\it GMAPWALCLQVCVLVCVQERGAEQCQITVIASKGKHHFRTFPTKGSA$	300
Quail	1bV-L	241	IRDKNNKQTVKML <i>GMAPWALCLQVCVLVCVQERGAEQCQITVIASKGKQNLSYKGLRFKV</i>	300

Quail	laL	301	YLSAAINPILYNIMSKKYRVAACRLFGLKTLPKKRLSSTKQDSSRVWTEPTVAT	354
Quail	1aS	294	YLSAAINPILYNIMSKKYRVAACRLFGLKTLPKKRLSSTKQDSSRVWTEPTVAT	347
Quail	laV-L	285	YLSAAINPILYNIMSKKYRVAACRLFGLKTLPKKRLSSTKQDSSRVWTEPTVAT	338
Quail	1b-L	301	LR	302
Quail	1bV-L	301	IAEQLFLFL	309

3296 TTCATACTCTGCTGGTTGCCT 3316 F I L C W L P

656	GGTGTGGATCTCCAGCATCTTCTTTTTTTTCTTGCCTGTCTCTGCCTCACGGTGCTGTACAG VWISSIFFFCVVFCLTVLYS	715
716		775
	L I G R K L W R R K R K N I G P S T V I	
776	CAGGGACAAGAATAACAAGCAGACTGTGAAGATGCTACG <mark>GT</mark> ATGGCTCCCTGGGCTCTATG R D K N N K Q T V K M L G M A P W A L C	835
836	$\begin{smallmatrix} TTTTCCAAGTGTGTGTGTGTGTGTGGGGGGGGGG$	895
896	TGTCATTGCTTCTAAAGGAAAGCATCATTTTAGAACCTTTCCTACAAAGGGCTCCGCTTT V I A S K G K H H F R T F P T K G S A L	955
956	AAGGTAATTGCAGAACAACTCTTCCTTTCCTTTGATTTATTT	1015
1016	K V I A E Q L F L F L * GGGACTCTAAAACACTTAAGGAGATTTTAATAACAACCTCTGACAAAGACAAATACCCTC	1075
1076	GTTGCAATTAGCTCTTGCCCTGGAGATTTTTAGAACATCTTTGGTTGTGGATACCAACAT	1135
1136	TATTTACAGAGGATAGTTTATTTGATTTTCAAACTAACTTCTTTTAAACCCACAAAGTTG	1195
1196	GCTGCAGACTAAGCAAGCAGGGTATGATGTGCACCAACTTCCAAATGAAAAGGCATTTTT	1255
1256	AGCAAATTGGGGTAATTTAGCAGAGTGGCTGTTTAAGATCATGGAAAGTGATCTTATTTT	1315
1316	TGTATTAGAAAAGCATCAGCCTTTGCTGAACAGTGACCATTTCGTCTACTTTAGAGTCTG	1375
1376	TAATTCCCTAAATTCCCACTGACTTTCAGGTAACAGGATGGAGACGACAGATGCTGTCAG	1435
1436	TCTGACTGTATTTTCACTGCTGCATGGCTTAAACAACAGACACCGCTCGCACACAGAAGA	1495
1496	GCACATTTAGCACAGGGATGCTGGCAGCTCCTGACAAGCATGTGCTGGGAGTTGTCTGCA	1555
1556	CAGAACCCAAAGTTGCTGCACAGATCCATGCCCGGTCACTGAGCACAGCTGCGTGCTTTC	1615
1616	ACTCTGACAGATCCCAGCATGAGCTCCCATGGATGGGATGCTTCACACAGGCACCAAGGC	1675
1676	AAGGCAGAGGTGAAGGGCTAATGAGCCAGAAGGAGAAGTGGCAGTGTGCCCTAAGGGGCT	1735
1736	TCATTATTATAGGAGCATACCTGACCTTTTGTGAGTGCCCTGCTTTAGTACTACTACC	1795
1796	ACCAAAAATAATAAAAACCCAAGGCATTCTTTGATCCCTTTCAGCCACATTTTACATTCAA	1855
1856	TAGAATTAGTTCAGGTGGGTAAGTGTGACCTTGGAAGTAATTCTTCACTCAC	1915
1916	AGCTTCAGGATTATGGATCTCTATTTACAATAAGTAAATTGCCAGCATGTACCGTGTTTA	1975
1976	TCTATCTGCATACTTAACCGTAAGGAATTTCAAAACACTAAGTGCTTATTTCTGCCCCCA	2035
2036	AGTATTGCCTACAGCACTATGGTATTTCAGACACCTTTGCTTCTTCTGCAAGGGCTGGGA	2095
2096	ACAGCATGGCAGGGGTGAGACCTTCCTCTGGCAAAGCCAACATTCTGAGGTCGAAAACAG	2155
2156	CCCAATGCTGGGCAGAAAAAAGAAGTGAATAAGGGCTCAATAGCAGCAGATGCACAATGC	2215
2216	AAGCTGCTCTTACTGCTTTTAATTTTCTGCCTGAAATTTTGAAGGCGCTTCCTAAGTCTT	2275
2276	CAGCGAGTCACGGAACATCGATTAAATGGGATTAGCATCACTAACAATAGCGCTGCAACT	2335
2336	GTAGAAAGATTATATGCCTCTAGGATAGTAATTAAACACCCAAACATATAGCCTGACTTT	2395
2396	GAAAGGAGCTATCATAATGCATTCCTCTTGAAATCAAGGGGGTTCTGCACAAGTGAGGAT	2455
2456	CAAACTGCATCCTCAAAAACCCCAGTTAAGAGAGATGTGCACACTTACCTGCAAACATACC C K H T	2515
2516	GGCTATGCTCAATATTCTGTATACAATGACCACATTGGTAGCAATCAACACTTGGATTAA GYAQYSVYNDHIGSNQHLD* ##	2575
2576	<i>ACCTCAGAGCGTGGCTTGTGAGCCATGGAAACTTCAGCTGAAA</i> CTGAAAAAAAAAA	2635
2636	AAATTAATCAAAGTGTTGGGCTCAAGAAAACATAGAGCAGGAAAGCAGATACTCTGAATT	2695
2696	TCAGCTGCGTGCTGCACACTATGCCATAAATTGCATGTAGCCTTTGTGTCCTTGGAGTAA	2755
2756	TCGTGTGCCAGTGCACAGGCAGACAGGCAGGATGCAGTGCTGCCTGTTGTCACCCTGTTG	2815
2816	GATGTGCCCTACAGATCCAGGTGGAGTTATTTTGTCCTTTCGCCTTTGTCTTGAACCATT	2875
2876	TTGCTTCTCAGACATTAAATCCTCCACTGTAAACCACAGCACTGAGTCTACCTTGTTGCA	2935
2936	CATATTTTGCCTTTGTAGGTGCAGGTGGTAGATTATGTTATAATTTCTGTCACTGGTCCA	2995
2996	TCACTTAAACTCTGTTCCTTTATGAAAAGATGACTTGATAGCTCAGGTGTGTGCTACAGC	3055
3056	AGAGTAGCTGTGTGGTACACAGGTGCAATCAATTCATTTTAAGTATTGCTAATCTACCCT	3115
3116	GCCAGAAAATGTACTTAGGAGAAAACCTGAAAAGTTACGGGGTGCCATTCTCACTTGGGGG	3175
3176	TTAATTGGTTGAAAAGAGAGAATGCTCTTTCATTTAAATCAGCCTTTTTTTCCCCCCCC	3235
3236	TACTCACAGTTAACACACTTTCTTCTGCTGTTTTTGTTTTGTTTTGTGTGGTGGTATTTGCT V V V F A	3295

Fig.6

Figure 7

Figure 8

