1	
3	Muscarinic receptor subtypes involved in regulation of colonic motility in mice: functional
4	studies using muscarinic receptor-deficient mice
5	
6	Takaji Kondo ¹ , Miwa Nakajima ¹ , Hiroki Teraoka ¹ , Toshihiro Unno ² , Sei-ichi Komori ² ,
7	Masahisa Yamada ³ and Takio Kitazawa ¹
8	
9	
10	1. School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido
11	069-8501, Japan.
12	2. Lab Pharmacol., Fac. Applied Biol. Sci., Gifu University, Gifu 501-1193, Japan.
13	3. Yamada Research Unit, RIKEN Brain Sci. Inst., Saitama 351-0198, Japan.
14	
15	
16	Correspondence Author: Takio Kitazawa. School of Veterinary Medicine, Rakuno
17	Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
18	
19	
20	
21	

1

3 Although muscarinic M₂ and M₃ receptors are known to be important for regulation of gastric and small intestinal motility, muscarinic receptor subtypes regulating colonic 4 5 function remain to be investigated. The aim of this study was to characterize muscarinic 6 receptors involved in regulation of colonic contractility. M₂ and/or M₃ receptor knockout 7 (KO) and wild-type mice were used in *in vivo* (defecation, colonic propulsion) and *in vitro* (contraction) experiments. Amount of feces was significantly decreased in M₃R-KO and 8 9 M₂/M₃R-KO mice but not in M₂R-KO mice. Ranking of colonic propulsion was wild-type $=M_2R-KO > M_3R-KO > M_2/M_3R-KO$. In vitro, the amplitude of migrating motor 10 complexes in M2R-KO, M3R-KO and M2/M3R-KO mice was significantly lower than 11 that in wild-type mice. Carbachol caused concentration-dependent contraction of the 12 13 proximal colon and distal colon from wild-type mice. In M₂R-KO mice, the concentration-contraction curves shifted to the right and downward. In contrast, 14 carbachol caused non-sustained contraction and relaxation in M₃R-KO mice depending 15 on its concentration. Carbachol did not cause contraction but instead caused relaxation of 16 colonic strips from M₂/M₃R-KO mice. 17 4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2butyn -1-aminium chloride 18 (McN-A-343) caused a **non-sustained** contraction of colonic strips from wild-type mice, 19 and this contraction was changed to a sustained contraction by tetrodotoxin, pirenzepine 20

1	and L-nitroarginine methylester (L-NAME). In the colon of M ₂ /M ₃ R-KO mice,
2	McN-A-343 caused only relaxation, which was decreased by tetrodotoxin, pirenzepine
3	and L-NAME. In conclusion, M ₁ , M ₂ and M ₃ receptors regulate colonic motility of the
4	mouse. M ₂ and M ₃ receptors mediate cholinergic contraction, but M ₁ receptors on
5	inhibitory nitrergic nerves counteract muscarinic contraction.
6	
7	Key words: mouse colon, muscarinic receptor, knockout mouse, nitrergic nerves
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

1. Introduction

2

1

3 Acetylcholine released from parasympathetic nerves plays an important role in regulation of gastrointestinal motility. Muscarinic receptors on enteric neurons and muscle 4 5 cells are targets for acetylcholine. Molecular cloning studies have demonstrated the 6 presence of five receptor subtypes (M₁-M₅) and co-localization of two or three subtypes in the same organ (Levey, 1993; Eglen et al., 1996; Caulfield and Birdsall, 1998). Although 7 five muscarinic receptors are distributed on enteric neurons and muscle cells of the 8 9 gastrointestinal tract, M₂ and M₃ are the main receptor subtypes expressed on muscle cells 10 and mediate contraction induced by acetylcholine (Eglen et al., 1996; Ehlert et al., 1997; Sawyer and Ehlert, 1998; Eglen, 2001). The M₂ receptor is also expressed on enteric 11 cholinergic nerves and regulates acetylcholine release (Vizi et al., 1989; Coulson et al., 1213 2002; Harrington et al., 2010). Immunohistochemical and release studies have indicated that the M₁ receptor is localized in myenteric nerves and regulates acetylcholine release 14 (Dietrich and Kilbinger, 1995; Harrington et al., 2007; 2010) and NO release (Wiklund et 15 al., 1993; Iversen et al., 1997). McN-A-343 has been used to characterize the M₁ receptor 16 in gastrointestinal tract, but low expression levels of M₁ receptor and possible actions of 17 McN-A-343 on M₂ and M₃ receptors (Levey, 1993; Richards and Van Giersbergen, 18 1995; Ehlert et al., 1999; Figueroa et al., 2009) hinder analysis of M₁ receptor-mediated 19 20 actions.

- 1 Recently, mutant mice lacking muscarinic receptor subtypes have been generated and
- these mice have revealed the physiological functions of muscarinic receptors (Wess,
- 3 2004). Results of studies using M₂ or M₃ receptor knockout (KO) mice have indicated that
- 4 M₂ and M₃ receptors cause gastric and intestinal contraction through different
- 5 mechanisms, but in wild-type mice, a synergistic pathway requiring both subtypes is
- 6 activated (Unno et al., 2005; Sakamoto et al., 2008). In the stomach of M₃R-KO,
- 7 M₁-receptor mediated nitrergic relaxation was demonstrated (Stengel and Cohen, 2003).
- 8 Therefore, muscarinic receptor KO mice are useful for unmasking the functions of
- 9 muscarinic receptors expressed at low levels. In the colon, migrating motor contractions
- are regulated by many kinds of enteric neurons, such as excitatory cholinergic,
- serotonergic and peptidergic neurons, and inhibitory nitrergic neurons (Lyster et al., 1995;
- Brierley et al., 2001; Powell and Bywater, 2001; Serio et al., 2003; Gourcerol et al.,
- 2009; Dickson et al., 2010). Of cholinergic regulation, stimulation by neostigmine
- enhances colonic motility in humans through activation of M₁, M₂ and M₃ receptors (Law
- et al., 2001), and involvement of cholinergic nerves in migrating motor complexes has
- been **demonstrated** (Brierley et al., 2001; Gourcerol et al., 2009). In the stomach and
- ileum, functional studies have already been carried out with muscarinic receptor KO mice
- (Unno et al., 2005; Kitazawa et al., 2007), but the function of muscarinic receptor
- subtypes in the mouse colon remains to be investigated.
- In the present study, we used M₂R-KO, M₃R-KO and M₂/M₃R-KO mice and

- 1 examined in vivo colonic functions (defecation, propulsion) and muscarinic receptor
- agonist-induced responses of colonic strips. The function of the M₁ receptor was further
- determined in the **KO** mice using McN-A-343.

5

2. Materials and methods

6

2.1 Animals and tissue preparations

8

- 9 All experiments described were performed in accordance with institutional guidelines
- approved by the Animal Ethics Committee of School of Veterinary Medicine, Rakuno
- Gakuen University, Ebetsu, Hokkaido, Japan.
- The generation of mice lacking muscarinic M₂ or M₃ receptors or both M₂ and M₃
- receptors has been described previously (Gomeza et al., 1999; Yamada et al., 2001;
- 14 Struckmann et al., 2003). The genetic backgrounds of the mice used in the present study
- were 129J1 (50%) x CF1 (50%) for M_2R -KO and their corresponding wild-type mice,
- 16 129vEv (50%) x CF1 (50%) for M₃R-KO and their corresponding wild-type mice, and
- 17 129J1(25%) x 129SvEv (25%) x CF1 (50%) for M_2/M_3 R-KO mice. DDY mice (25-30 g,
- males) from Sankyo Lab Service Ltd. (Sapporo, Japan) were also used as control
- wild-type mice. The animals were housed in polycarbonate-ventilated cages. The
- temperature of the animal room was maintained at 23±1°C with relative humidity of

1	40-60% and a daily light/dark cycle (7:00 am-7:00 pm). Food (CRF-1, Oriental Yeast Co
2	Ltd, Japan) and water were given ad libitum.
3	Mice of either sex, aged more than 3 months and weighing 23-30 g, were killed by
4	cervical dislocation. The whole colon was then quickly isolated and placed in an
5	ice-cold Krebs solution. Segments of the proximal colon (20 mm distal to the cecum)
6	and distal colon (20 mm proximal to the anus) were prepared for the experiments.
7	Muscle preparations (15-20mm in length) were suspended vertically in an organ bath
8	filled with Krebs solution (NaCl, 118 mM; KCl, 4.75 mM; MgSO ₄ , 1.2 mM; KH ₂ PO ₄ ,
9	1.2 mM; CaCl $_2$, 2.5 mM; NaHCO $_2$, 25 mM and glucose, 11.5 mM) warmed at 37 $^{\circ}$ C and
10	gassed with $95\%O_2 + 5\%CO_2$. Mechanical activity in the longitudinal muscle direction
11	was measured with an isometric force transducer (SB-11T, Nihon Kohden) and recorded
12	both on an ink-writing recorder (U-228, Nippon Denshi Kagaku, Tokyo, Japan) and on a
13	computer-aided data acquisition system (Power Lab, Japan Bioresearch Center Nagoya,
14	Japan).
15	
16	2.2 Isometric tension recording
17	
18	After 90-min equilibration at an initial tension of 0.5 g, colonic muscle strips were

contracted spontaneously and motility patterns were compared between wild-type and muscarinic receptor KO mice. After observing spontaneous contraction patterns, each

19

- muscle strip was stimulated by 50 mM KCl solution (50 mM K⁺) for 5 min at 15-min
- 2 intervals until reproducible contractions were obtained (3-4 times). To compare the
- 3 concentration-response relationships of carbachol among colonic strips isolated from the
- 4 wild-type and KO mice, non-cumulative (single) concentration-response curves were
- 5 established with **half-log unit concentration** increments (1 nM-30 μM).
- 6 Concentration-response relationships of carbachol were analyzed using the computer
- 7 software program Origin (Version, 7). The amplitude of contraction (elevation of muscle
- 8 tonus) among the preparations was normalized by the amplitude of standard contraction
- 9 of 50 mM K⁺ and expressed as percentage. In the present experiments, since there were
- no differences in the amplitude of 50 mM K⁺-induced contraction and responsiveness to
- carbachol in three wild-type mice and DDY mice, the data from these mice were
- considered as control responses. The 50 mM K⁺-induced contractions in the proximal
- colon were 0.81 ± 0.08 g (n=15) for wild-type mice, 0.84 ± 0.24 g (n=9) for M₂R-KO mice,
- $0.68\pm0.19 \text{ g (n=5)}$ for M₃R-KO mice and $0.71\pm0.08 \text{ g (n=7)}$ for M₂/M₃R-KO mice. In the
- distal colon, the 50 mM K⁺-induced contractions were 0.71±0.13 g (n=11) for wild-type
- mice, 0.71 ± 0.17 g (n=6) for M₂R-KO mice, 0.85 ± 0.19 g (n=5) for M₃R-KO mice and
- 0.67 ± 0.21 g (n=7) for M₂/M₃R-KO mice, indicating that standard contraction induced by
- 18 50 mM K⁺ was not different among wild-type and muscarinic receptor KO mice.
- 19 Effects of McN-A-343 on isolated colonic contractility were compared between
- wild-type and M₂/M₃R-KO mice. McN-A-343 caused a **non-sustained** contraction in the

1	wild-type mouse colon but caused relaxation or reduced spontaneous contractility in the
2	M ₂ /M ₃ R-KO mouse colon (see Results). Therefore, McN-A-343-induced mechanical
3	changes in the colon were evaluated using area surrounded by contractile curves and
4	baseline (area under the curve, AUC for 5 min) and normalized by AUC of 50 mM
5 6	K ⁺ -induced contraction or by that of the control motility in the absence of drugs.
7	2.3. Fecal excretion
8	
9	Fecal excretion was assessed in mice according to the method described by Izzo et
10	al. (1999). On the day of the experiment, mice were placed individually on a grid floor
11	and given water ad libitum. The food was withdrawn at 9:00 am. Three hours later, pellets
12	of feces discharged were collected for 3 h (0.00 pm to 3.00 pm) and they were weighed
13	immediately (wet weight) and then after drying for 20 h at 50°C (dry weight). An action
14	on secretion or re-absorption of fluids was assessed from the ratio of wet to dry fecal
15	weights (water content, %). Atropine (1 mg/kg) was injected intraperitoneally at 0.00 pm
16	and feces were collected for 3 h.
17	
18	2.4. Colonic propulsion
19	

Colonic propulsion was measured according to the method of Pinto et al. (2002).

1	After 16-h fasting (9.00 pm – 1:00 pm), a glass bead (2 mm in diameter) was inserted in
2	the colon (20 mm from the anus) of wild-type mice and muscarinic receptor KO mice.
3	The time to expulsion of the glass bead was determined and the times were compared in
4	the animals. In the wild-type mice, the effect of atropine (1 mg/kg, i.p.) on colonic
5	propulsion was examined.
6	
7	2.5. Chemicals
8	
9	The following chemicals were used in the present experiments: atropine sulfate
10	(Sigma), carbamylcholine chloride (carbachol, Sigma), methacholine chloride (Sigma),
11	4-[[[(3-chlorophenyl)amino]carbonyl]oxy]-N,N,N-trimethyl-2butyn-1-aminium chloride
12	$(McN-A-343, Sigma), N^{\omega}$ -nitro-L-arginine methylester (L-NAME, Sigma), pirenzepine
13	dihydrochloride (Tocris) and tetrodotoxin (Wako). Drugs were dissolved in distilled water
14	and applied directly to an organ bath.
15	
16	2.6. Statistical analysis
17	
18	The results of experiments are generally expressed as means± S.E.M of at least
19	four experiments using muscle strips from different mice. Statistical significance was
20	assessed by Student's t-test or by analysis of variance (ANOVA) followed by

1	Bonferroni's test using Origin software (Version 7.0, Origin Lab. USA). A <i>P</i> value <0.05
2	was considered to be statistically significant.
3	
4	3. Results
5	
6	3.1. Comparison of fecal excretion
7	
8	Wet weights of feces evacuated over a period of 3 h and mean water contents (%)
9	were 0.17±0.01 g (n=9) and 47% for wild-type mice, 0.14±0.0 2g (n=11) and 46% for
10	M_2 R-KO mice, 0.086 ± 0.015 g and 48.6% (n=10) for M_3 R-KO mice and 0.06 ± 0.017 g and
11	46% (n=12) for M ₂ /M ₃ R-KO mice, respectively. Amount of feces decreased
12	significantly in M_3R -KO and M_2/M_3R -KO mice but not in M_2R -KO mice. On the other
13	hand, water contents were the same among all mice examined. In wild-type mice, wet
14	weight of feces was reduced by treatment with atropine (1 mg/kg, i.p., 0.03±0.01 g, n=9),
15	confirming the important role of muscarinic receptors in fecal excretion.
16	
17	3.2. Comparison of colonic propulsion
18	
19	The bead evacuation time was 532±89 s (n=13) in wild-type mice. Atropine (1
20	mg/kg, i.p.) significantly lengthened the evacuation time (3066±941 s, n=10). Although

- the evacuation time was not significantly different in M_2R -KO mice (530±174 s, n=7), the
- 2 required time to evacuate a bead was significantly longer in both M₃R-KO mice
- $3 (1730\pm562 \text{ s}, n=6) \text{ and } M_2/M_3R\text{-KO mice } (2220\pm405 \text{ s}, n=7).$ Taken together with the
- 4 defecation results, a significant negative correlation was observed between amount of
- feces and evacuation time of a bead (R=-0.95, p=0.043).

3.3. Spontaneous contraction pattern of colonic strips

Spontaneous contraction observed in proximal and distal colonic strips of wild-type mice could be divided into two patterns according to whether high-amplitude contractions with low frequency were superimposed on high-frequency low-amplitude contractions or not. Typical spontaneous motility patterns with high-amplitude contractions (pattern *A*) and without those contractions (pattern *B*, only small high-frequency contractions) are shown in Fig. 1. In the proximal colon, parameters of high-amplitude (large) contraction were 105±7.1% of 50 mM K⁺-induced contraction (amplitude) and 3.11±0.3/10min (frequency), and they were not significantly different from the parameters in the distal colon. Small-amplitude and high-frequency basal spontaneous contractions were 38±3% and 5.8±0.3/min (n=22) in the proximal colon and 16±3% and 5.7±0.7/min (n=22) in the distal colon, respectively. Pattern *A* contraction was dominantly observed in the present experimental conditions. In the proximal colon.

- percentages of pattern A were 73% in wild-type mice (17 of 22 preparations), 71% in
- 2 M₂R-KO mice (5 of 7 preparations), 80% in M₃R-KO mice (4 of 5 preparations) and 66%
- in M₂/M₃R-KO mice (6 of 9 preparations). Percentages of pattern A in the distal colon
- 4 were 68% in wild-type mice (15 of 22 preparations), 62% in M₂R-KO mice (5 of 8
- preparations), 67% in M₃R-KO mice (4 of 6 preparations) and 33 % in M₂/M₃R-KO mice
- 6 (2 of 6 preparations). **Amplitude of large** spontaneous contractions in the proximal colon
- of M₂R-KO, M₃R-KO and M₂/M₃R-KO mice were significantly lower than that in
- 8 wild-type mice, but the frequencies of contraction were **the same** among **all** colonic
- 9 preparations. As in the proximal colon, the amplitudes of large spontaneous contraction in
- the distal colon of KO mice were also significantly smaller than that in wild-type mice
- without **change** in frequency (Table 1).

13

3.4. Carbachol-induced contraction

14

15

16

17

18

19

20

In the proximal colon of wild-type mice, carbachol caused concentration-dependent contraction (1 nM-100 μM) (Fig. 2). The contractile response to carbachol consisted of phasic and tonic contractions and was not affected by tetrodotoxin (1 μM) (data not shown). The pEC₅₀ value and the relative maximum contraction were 6.9±0.12 and 359±41%, respectively (n=7). In M₂R-KO mice, the time course of carbachol-induced contraction was similar to that in wild-type mice (phasic contraction followed by tonic

- one). However, the concentration-response curve was shifted both to the right and
- downward, and the pEC₅₀ value (6.34±0.14, n=6) and maximum contraction (238±36%,
- 3 n=6) were significantly decreased (Fig. 3A). Carbachol also caused contraction in
- 4 M₃R-KO mice, but the **contraction** was **not sustained** and changed to relaxation at a high
- 5 concentration (100 μM), resulting in a bell-shaped concentration-response curve. In
- 6 M₂/M₃R-KO mice, carbachol did not cause contraction but instead only caused a
- 7 **concentration-dependent relaxation** and decreased spontaneous **rhythmic contraction**
- 8 (1-100 μ M) (Figs. 2 and 3A). The relaxation was abolished by treatment with atropine
- 9 (1 μ M) and tetrodotoxin (1 μ M) (data not shown).
- In distal colon strips, carbachol also caused a concentration-dependent contraction
- consisting of both phasic and tonic contraction components in wild-type and M₂R-KO
- mice (Fig. 4). The concentration-response curve for M₂R-KO mice shifted downward
- $(6.03\pm0.07 \text{ and } 167\pm16\%, \text{ n=6})$ compared with that for wild-type mice $(5.9\pm0.19 \text{ and } 167\pm16\%, \text{ n=6})$
- 14 257±24%, n=6), and only maximum contraction was decreased significantly. In M₃R-KO
- mice, carbachol-induced contraction was **not sustained** and relaxation was induced at
- high concentrations (10-100 µM), resulting in a bell-shaped concentration-response
- 17 relationship. In M₂/M₃R-KO mice, carbachol did not contract the colonic strips but
- instead only caused a concentration-dependent relaxation (Figs. 3B and 4).

20

3.5 Mechanical responses to McN-A-343 in wild-type and M₂/M₃R-KO mice

2 First, the effect of McN-A-343 on colonic strips from wild-type mice was examined. As shown in Fig. 5, McN-A-343 caused a non-sustained contraction in 3 both colonic strips, unlike the responses to carbachol (Figs. 2 and 4). In the presence 4 5 of tetrodotoxin (1 µM), McN-A-343-induced responses changed from non-sustained to 6 sustained contraction, and the contractile responses expressed as AUC increased 7 significantly (Fig. 5 and Table 2). Both in the absence and presence of tetrodotoxin, atropine (1 µM) markedly decreased the McN-A-343-induced contraction (Fig. 5). 8 9 Pirenzepine (100 nM) was effective for changing the **non-sustained** contraction of McN-A-343 (100 μM) to a sustained contraction, and contractile activity also increased 10 significantly (Table 2). A high concentration of pirenzepine (10 µM) inhibited the 11 contraction of McN-A-343 (data not shown). Enhancement of McN-A-343-induced 1213 contraction by tetrodotoxin and pirenzepine suggests the involvement of an M₁ receptor-linked inhibitory neural pathway activated by McN-A-343. Therefore, the effect 14 of a NO synthase inhibitor, L-NAME, was examined. Similar to the effects of 15 tetrodotoxin and pirenzepine, L-NAME (100 µM) enhanced the McN-A-343-induced 16 responses (Table 2). 17 18 In proximal and distal colonic strips from M₂/M₃R-KO mice, McN-A-343 caused concentration-dependent inhibition of muscle contractility. Decreases in resting muscle 19 tension and amplitude of **rhythmic** spontaneous **contraction** were typical responses **to** 20

- 1 McN-A-343 in the proximal colon, but decrease in muscle tension was marked in the
- distal colon. According to the inhibitory effects of McN-A-343, the
- 3 concentration-responses curves shifted downward compared with those for wild-type
- 4 mice (Fig. 6). To examine the mechanisms of the inhibitory effects, the pharmacological
- 5 properties of McN-A-343-induced responses were assessed. Pirenzepine (100 nM)
- 6 significantly decreased the MCN-A-343-induced inhibition and reversed it to contractile
- 7 responses (Table 3). Tetrodotoxin and L-NAME also significantly reduced the
- 8 McN-A-343-induced relaxation. Bethanechol, a muscarinic receptor-selective cholinester,
- 9 also caused a relaxation of colonic strips, and pharmacological results similar to those
- 10 **for McN-A-343** were obtained (Table 3).

12 3.6. Effects of pirenzepine and McN-A-343 on defecation of mice

The outcome of the studies described in the previous paragraph prompted us to

examine the effects of pirenzepine and McN-A-343 on defecation of wild-type mice.

Pirenzepine (0.04, 0.2 and 1 mg/kg, i.p.), concentration-dependently decreased the

amount of feces for 3 h (wet weight, control: 0.3±0.02 g, 0.04 mg/kg: 0.27±0.04 g, 0.2

mg/kg: 0.2±0.04 g, 1 mg/kg: 0.16±0.04 g, n=10). McN-A-343 (1 and 10 mg/kg, i.p.) also

decreased the defecation (1 mg/kg: 0.32 ± 0.03 g, 10 mg/kg: 0.2 ± 0.03 g, n=10).

20

11

13

16

4. Discussion

2

1

3 M₂ and M₃ receptors are the dominant muscarinic receptor subtypes expressed in the gastrointestinal tract (Levey 1993; Eglen et al., 1996; Ehlert et al., 1997; Eglen, 2001). 4 5 Functional studies using muscarinic receptor-deficient mice have indicated important 6 roles of both M₂ and M₃ receptors in muscarinic agonist-induced contraction of the stomach and ileum (Unno et al., 2005; Kitazawa et al., 2007). Similar to those results, 7 both M₂ and M₃ receptors are involved in the contractile responses to muscarinic agonists 8 9 in the colon and contribute to the propulsive motility of the colon and defecation. In 10 addition, the M₁ receptor on enteric nitrergic nerves regulates motility in opposition to M₂/M₃ receptor-mediated colonic contraction. 11 First, defecation and colonic propulsion were compared *in vivo* using wild-type, 12 M₂R-KO, M₃R-KO and M₂/M₃R-KO mice. Amount of feces tended to decrease in 13 M₂R-KO mice and was significantly decreased in M₃R-KO and M₂/M₃R-KO mice, and 14 atropine decreased feces output in wild-type mice as previously reported (Gourcerol et al., 15 2009). Comparison of colonic bead evacuation times showed that the ranking order of 16 propulsion force was wild-type = $M_2R-KO > M_3R-KO \ge M_2/M_3R-KO$. Although gastric 17 emptying in M₂/M₃R-KO mice was not different from that in wild-type mice due to 18 compensatory enhancement of a non-cholinergic excitatory pathway (Kitazawa et al., 19 20 2007), the present in vivo experiments showed a marked decrease in colonic motor

- function in M₃R-KO and M₂/M₃R-KO mice. Consequently, the present results indicated a
- 2 significant role of muscarinic receptors (especially M₃ type) in defecation and colonic
- 3 propulsion in mice *in vivo*.
- 4 Two patterns of spontaneous contraction in isolated colonic strips were observed in
- 5 the experiments. One is pattern A consisting of high-frequency small contractions and
- 6 superimposed **low-frequency** large contractions (about 3-min intervals), and the other is
- 7 pattern B lacking large contractions. Pattern A was dominant in wild-type, M₂R-KO and
- 8 M₃R-KO mice, but the percentage of appearance for pattern A tended to decrease in
- 9 M₂/M₃R-KO mice (especially in the distal colon). Spontaneously occurring migrating
- motor complexes (Fida et al., 1997; Brierley et al., 2001; Gourcerol et al., 2009) or
- myoelectric complex (Lyster et al., 1995) have been recorded in the isolated mouse colon
- and conscious mouse colon. The migrating motor complexes are separated by periods of
- 13 quiescence and consist of rapid contraction superimposed on a long-duration
- high-amplitude contraction occurring at 3-min intervals (Fida et al., 1997; Brierley et al.,
- 2001) similar with the pattern A contraction. Therefore, the high-amplitude colonic
- 16 contractions observed in the present *in vitro* study are thought to be consistent with these
- migrating motor complexes. Both M₂ and M₃ muscarinic receptors are necessary to
- induce high-amplitude contractions because the amplitude of contraction was
- significantly decreased in muscarinic receptor KO mice. Brierley et al. (2001) and
- Gourcerol et al. (2009) have already demonstrated the involvement of cholinergic nerves

1 and muscarinic receptors in migrating motor complexes. On the other hand, the frequency of high-amplitude contraction was not different in wild-type and muscarinic 2 3 receptor KO mice, indicating that M₂ and M₃ receptors are not involved in the regulation of frequency. A NO synthase inhibitor increased the frequency of giant 4 5 migrating contraction in the mouse colon (Powell and Bywater, 2001), suggesting that inhibition by nitrergic nerves might suppress the initiation of migrating motor complex 6 and regulate the frequency. Atropine decreased both migrating motor complexes and 7 defecation in conscious mice (Gourcerol et al., 2009). Therefore, decrease in the 8 9 amplitude of large contraction could in part explain the decrease in colonic propulsive ability and following defecation in the muscarinic receptor KO mice in the *in vivo* study. 10 Amplitudes of large contraction were almost the same in muscarinic receptor KO mice, 11 but the colonic propulsive efficacy was not the same between M₂R-KO and M₃R-KO 12 mice. Discrepancy in the results of *in vitro* and *in vivo* studies suggests differences in the 13 regulation of colonic motility by extrinsic parasympathetic nerves from the sacral spinal 14 cord. 15 Comparison of concentration-response curves for carbachol among wild-type and 16 muscarinic receptor KO mice indicated that M₂ and M₃ receptors, but not other types, are 17 involved in the contraction induced by muscarinic receptor agonists. In M₂R-KO mice, 18 the maximum contraction decreased markedly, but changes in pEC₅₀ were different in the 19 proximal colon and distal colon. In M₃R-KO mice, the concentration-response curve 20

- shifted downward and became bell-shaped, similar to that for the stomach of M₃R-KO
- 2 mice (Stengel and Cohen, 2003), but a bell-shaped curve was not the case in the ileum
- 3 (Unno et al., 2005). The time course of carbachol-induced contraction also changed from
- 4 sustained (wild-type and M₂R-KO) to **non-sustained** (M₃R-KO) as in gastric
- 5 preparations (Kitazawa et al., 2007). McCaron et al. (2002) demonstrated that the tonic
- 6 contractile phase was induced by Ca²⁺ entry from the voltage-dependent Ca²⁺ channel due
- to inositol-trisphosphate-induced Ca²⁺ store depletion. Therefore, inositol-trisphosphate
- 8 formation by M₃ receptor activation is necessary for the tonic contraction phase. In
- 9 M₂/M₃R-KO mice, carbachol did not cause contraction but instead relaxed both colonic
- strips, which was decreased by atropine and tetrodotoxin. Atropine-sensitive
- carbachol-induced colonic relaxation in M₂/M₃R-KO mice prompted us to investigate M₁
- receptor-mediated actions in the mouse colon. McN-A-343, a muscarinic receptor
- agonist, acts on the M_1 receptor with high affinity and high intrinsic activity.
- However, the affinity and intrinsic activity of McN-343 for M₂ and M₃ receptors are
- low. In contrast, carbachol expresses almost the same affinity and high intrinsic
- activity (0.7-1.0) for all muscarinic receptor subtypes (Ehlert et al., 1999; Figueroa et
- al., 2009). McN-A-343 caused relaxation of the rat small intestine through M₁
- receptors (Micheletti et al., 1987; Olgart and Iversen, 1999) but contracted the
- 19 guinea-pig tenia coli (Hishinuma et al., 1997) and rat colon through M₃ receptors
- 20 (Borjesson et al., 2000). In the present experiments, McN-A-343 caused

- atropine-sensitive **non-sustained** contractions of the mouse **colon and these**
- 2 contractions were not observed in the M₂/M₃R-KO mice. Tetrodotoxin changed the
- 3 **non-sustained** response to McN-A-343 in the wild-type mice colon to **a** sustained one.
- 4 Either pirenzepine or L-NAME was also effective in changing the contraction of
- 5 McN-A-343 into a sustained type as was tetrodotoxin. Since pK_b values of
- 6 pirenzepine for M₁ and M₃ receptors were reported to be 7.89 and 6.85, respectively
- 7 (Stengel and Cohen, 2003), 100 nM pirenzepine used was sufficient to block M₁
- 8 receptor-mediated action. Taken together these results, the non-sustained colonic
- 9 contraction induced by McN-A-343 is suggested to be a mixed response composed of
- smooth muscle contraction (M₂ and M₃ receptors) and relaxation through M₁
- 11 receptor mediated inhibitory nitrergic output. According to low affinity and low
- 12 intrinsic activity of McN-A-343 for M₂ and M₃ receptors (Ehlert et al., 1999;
- Figueroa et al., 2009), simultaneous activation of M₁ receptor-mediated inhibitory
- pathway suppresses the M₂/M₃ receptor-mediated sustained contraction and results
- in a non-sustained contraction shape. The M₁ receptor-activated nitrergic pathway was
- demonstrated in M₂/M₃R-KO mice since McN-A-343 caused relaxation of both proximal
- and distal colon strips, which was inhibited by tetrodotoxin, L-NAME and pirenzepine.
- 18 Immunohistochemical studies indicated that M₁ receptors are localized on nitrergic
- neurons in the guinea-pig and human enteric nerves (Harrington et al., 2007; 2010) and
- 20 that activation of the M₁ receptor evoked neural NO release followed by inhibition of

- gastrointestinal motility (Iversen et al., 1997; Olgart and Iversen, 1999; Kortezova et al.,
- 2 2004). Inhibitory effects on intestinal motility by endogenous NO release as a
- 3 consequence of M₁ receptor activation may represent a muscarinic receptor-mediated
- 4 negative feedback mechanism of colonic motility. In the human colon, in addition to
- M_2/M_3 receptor-mediated contraction, activation of the M_1 receptor has been shown to be
- 6 needed to enhance colonic propulsion and movement of luminal contents (Law et al.,
- 7 2001). Therefore, it is thought that the M_1 receptor has an important role in coordinating
- muscle contraction with other receptor subtypes $(M_2/M_3 \text{ receptors})$ in the colon.
- The present results suggest an important functional role of the M_1 receptor in colonic
- motor function. However, both McN-A-343 (agonist) and pirenzepine (antagonist)
- decreased the amount of feces in a dose-dependent manner. Since both drugs affect other
- muscarinic receptor subtypes depending on the doses (concentrations) and it is difficult to
- control their concentrations at muscarinic receptors in the colon, we could not evaluate
- the M₁ receptor-mediated function in this defecation study. Further experiments are
- needed to clarify the functional relevance of M_1 receptors in the mouse colon *in vivo*, and
- 16 M₁ receptor KO mice might be useful for evaluating the regulation of colonic motility by
- the M_1 receptor.
- In conclusion, this is the first functional study on the role of muscarinic receptor
- subtypes in colonic motility using M₂/M₃ muscarinic receptor KO mice. Muscarinic M₁,
- 20 M₂ and M₃ receptors regulate colonic motility of the mouse. M₂ and M₃ receptors mediate

1	cholinergic contraction, but M_1 receptors on enteric inhibitory nitrergic nerves stimulate
2	NO release counteracting muscarinic contraction.
3	
4	Acknowledgments
5	
6	We thank Dr. Jürgen Wess (NIH, Bethesda, MD, USA) for providing the muscarinic
7	receptor mutant mice and for reading the manuscript. This study was supported by a
8	Grant-in-Aid for Scientific Research (No.22380159) from the Ministry of Education,
9	Culture, Sports, Science, and Technology, Japan (Komori, S).
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

1	Defenences
1	References

- 3 Borjesson, L., Ali A., Nordgren, S., Delbro, D.S. 2000. Relaxation of rat distal colon by
- 4 activation of muscarinic neural receptors: possible involvement of P2y purinoceptors.
- 5 J. Auton. Nerv Syst. 81, 53-58.

6

- 7 Brierley, S.M., Nichols, K., Grasby, D.J., Waterman, S.A. 2001. Neural mechanisms
- 8 underlying migrating motor complex formation in mouse isolated colon. Br. J.
- 9 Pharmacol. 132, 507-517.

10

- 11 Caulfield, M.P., Birdsall, N.J. 1998. International Union of Pharmacology. XVII.
- 12 Classification of muscarinic acetylcholine receptors. Pharmacol. Rev. 50, 279-290.

13

- 14 Coulson, F.R., Jacoby, D.B., Fryer, A.D. 2002. Increased function of inhibitory neuronal
- 15 M₂ muscarinic receptors in trachea and ileum of diabetic rats. Br. J. Pharmacol. 135,
- 16 1355-1362.

1 Dickson, E.J., Heredia, D.J., Smith, T.K. 2010. Critical role of 5-HT_{1A}, 5-HT₃, and 5-HT₇ receptor subtypes in the initiation, generation, and propagation of the murine colonic 2migrating motor complex. Am J Physiol Gastrointest Liver Physiol. 299, G144-157. 3 4 Dietrich, C., Kilbinger, H. 1995. Prejunctional M₁ and postjunctional M₃ muscarinic 5 receptors in the circular muscle of the guinea-pig ileum. Nauyn-Schmiedeberg's Arch 6 7 Pharmacol. 351, 237-243. 8 Eglen, R.M. 2001. Muscarinic receptors and gastrointestinal smooth muscle function. Life 9 Sci. 23, 2573-2578. 10 11 Eglen, R.M., Hegde, S.S., Watson, N. 1996. Muscarinic receptor subtypes and smooth 12 muscle function. Pharmacol Rev. 48:531-565. 13 14 15 Ehlert, F.J., Griffin, M.T., Sawyer, G.W., Bailon, R. 1999. A simple method for estimation of agonist activity at receptor subtypes: Comparison of native and 16

cloned M₃ muscarinic receptors in guinea-pig ileum and transfected cells. J.

18 **Pharmacol. Exp. Ther. 289, 981-992.**

- Ehlert, F.J., Ostrom, R.S., Sawyer, G.W. 1997. Subtypes of the muscarinic receptor in
- 2 smooth muscle. Life Sci. 61, 1729-1740.

- 4 Fida, R., Lyster, D.J., Bywater, R.A., Taylor, G.S. 1997. Colonic migrating motor
- 5 complexes (CMMCs) in the isolated mouse colon. Neurogastroenterol Motil. 9, 99-107.

6

- 7 Figueroa, K.W., Griffin, M.T., Ehlert, F.J. 2009. Selectivity of agonists for the active
- 8 state of M₁ to M₄ muscarinic receptor subtypes. J. Pharmacol. Exp. Ther. 328,
- 9 331-342.

10

- Gomeza, J, Shannon, H., Kostenis, E., Felder, C., Zhang, L., Brodkin, J., Grinberg, A.,
- 12 Sheng, H., Wess, J. 1999. Pronounced pharmacologic deficits in M₂ muscarinic
- acetylcholine receptor knockout mice. Proc. Natl. Acad. Sci. USA. 96, 1692-1697.

14

- Gourcerol, G., Wang, L., Adelson, D.W., Larauche, M., Taché, Y., Million, M. 2009.
- 16 Cholinergic giant migrating contractions in conscious mouse colon assessed by using a
- novel noninvasive solid-state manometry method: modulation by stressors. Am. J.
- Physiol Gastrointest Liver Physiol. 296, G992-G1002.

19

Harrington, A.M., Hutson, J.M., Southwell, B.R. 2007. Immunohistochemical localization

1 of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea-pig and human enteric nervous system. J. Chem. Neuroanat. 33, 193-201. 23 Harrington, A.M., Peck, C.J, Liu, L., Burcher, E., Hutson, J.M., Southwell, B.R. 2010. 4 Localization of muscarinic receptors M₁R, M₂R and M₃R in the human colon. 5 Neurogastroenterol and Motil. 22, 999-1008. 6 7 8 Hishinuma, S., Hongo, I., Matsumoto, Y., Narita, F., Kurokawa, M. 1997. Contrasting effects of carbachol, McN-A-343 and AHR-602 on Ca²⁺ mobilization and Ca²⁺ influx 9 pathways in taenia coli. Br. J. Pharmacol. 122, 985-992. 10 11 12 Iversen, H., Wiklund, N.P., Olgart C., Gustafsson, L.E. 1997. Nerve stimulation-induced nitric oxide release as a consequence of muscarinic M₁ receptor activation. Eur. J. 13 Pharmacol. 331, 213-219. 14 15 Izzo, A.A., Mascolo, N., Borrelli, F., Capasso, F. 1999. Defecation, intestinal fluid 16 accumulation and motility in rodents: implications of cannabinoid CB1 receptors. 17 Naunyn-Schimiedeberg's Arch Pharmacol. 259, 65-70. 18 19 20 Kitazawa, T., Hashiba, K., Cao, J., Unno, T., Komori, S., Yamada, M., Wess, J., Taneike,

1 T. 2007. Functional roles of muscarinic M₂ and M₃ receptors in mouse stomach motility: Studies with muscarinic receptor knockout mice. Eur. J. Pharmacol. 554, 2 212-222. 3 4 5 Kortezova, N.I., Shikova, L.I., Milusheva, E.A., Itzev, D.E., Bagaev, V.A., Mizhorkova, Z.N. 2004. Muscarinic modulation of nitrergic neurotransmission in guinea-pig gastric 6 fundus. Neurogastroenteology and Motil. 16, 155-165. 7 8 9 Law, N-M., Bharucha, A.E., Undale, A.S., Zinsmeister, A.R. 2001. Cholinergic stimulation enhances colonic motor activity, transit, and sensation in humans. Am. J. Physiol 10 Gastrointest Liver Physiol. 218, G1228-G1237. 11 12 Levey, A.L. 1993. Immunological localization of m1-m5 muscarinic acetylcholine 13 receptors in peripheral tissues and brain. Life Sci. 52, 441-448. 14 15 16 Lyster, D.J., Bywater, R.A., Taylor, G.S. 1995. Neurogenic control of myoelectric complexes in the mouse isolated colon. Gastroenteology 108, 1371-1378. 17 18 McCarron, J.G., Craig, J.W., Bradley, K.N., Muir, T.C. 2002. Agonist-induced phasic and 19 20 tonic responses in smooth muscle are mediated by InsP3. J. Cell Sci. 115, 2207-2218.

- 2 Micheletti, R., Schiavone, A., Giachetti, A. 1987. Muscarinic M₁ receptors stimulate a
- 3 nonadrenergic noncholinergic inhibitory pathway in the isolated rat duodenum. J.
- 4 Pharmacol. Exp. Ther. 244, 680-684

- 6 Olgart, C., Iversen, H.H. 1999. Nitric oxide-dependent relaxation induced by M₁
- 7 muscarinic receptor activation in the rat small intestine. Br. J. Pharmacol.127, 309-313.

8

- 9 Pinto, L., Izzo, A.A., Cascio, M., Bisogno, T., Hospodar-Scott, K., Brown, D.R., Mascolo,
- N., Di Marzo, V., Capasso, F. 2002. Endocannabinoids as physiological regulators of
- 11 colonic propulsion in mice. Gastroenterology 123, 227-234.

12

- Powell, A.K., Bywater, R.A. 2001. Endogenous nitric oxide release modulates the
- direction and frequency of colonic migrating motor complexes in the isolated mouse
- colon. Neurogastroenterol Motil. 13, 221-228.

16

- 17 Richards, M.H., Van Giersbergen, P.L. 1995. Differences in agonist potency ratios at
- human m1 muscarinic receptors expressed in A9L and CHO cells. Life Sci. 57:397-402.

- Sakamoto, T., Unno, T., Kitazawa, T., Taneike, T., Yamada, M., Wess, J., Nishimura, M.,
- 2 Komori, S. 2007. Three distinct muscarinic signaling pathways for cationic channel
- activation in mouse gut smooth muscle cells. J. Physiol. 582, 41-61.

- 5 Sawyer, G.W., Ehlert, F.J., 1998. Contractile roles of the M₂ and M₃ muscarinic receptors
- 6 in the guinea pig colon. J. Pharmacol. Exp. Ther. 284, 269-277.

7

- 8 Stengel, P.W., Cohen, M.L., 2003. M1 receptor-mediated nitric oxide dependent
- 9 relaxation unmasked in stomach fundus from M₃-receptor knockout mice. J.
- 10 Pharmacol. Exp. Ther. 304, 675-682.

11

- 12 Serio, R., Alessandro, M., Zizzo, M.G., Tamburello, M., Mule, F. 2003.
- Neurotransmitters involved in the fast inhibitory junctional potentials in mouse distal
- 14 colon. Eur. J. Pharmacol. 460, 183-190.

15

- Struckmann, N., Schwering, S., Wiegand S., Gschnell, A., Yamada, M., Kummer, W.,
- Wess, J., Haberberger, R.V. 2003. Role of muscarinic receptor subtypes in the
- constriction of peripheral airways: studies on receptor-deficient mice. Mol. Pharmacol.
- 19 64, 1444-1451.

1 Unno, T., Matsuyama, H., Sakamoto, T., Uchiyama, M., Izumi, Y., Okamoto, H., Yamada, M., Wess, J., Komori., S. 2005. M₂ and M₃ muscarinic receptor mediated 2 contractions in longitudinal smooth muscle of the ileum studied with receptor knockout 3 mice. Br. J. Pharmacol. 146, 98-108. 4 5 Wess, J. 2004. Muscarinic acetylcholine receptor knockout mice: novel phenotypes and 6 clinical implications. Annu. Res. Pharmacol. Toxicol. 44, 423-450. 7 8 Wiklund, C.O., Wiklund, N.P., Gustafsson, L.E. 1993. Modulation of neuroeffector 9 transmission by endogenous nitric oxide: a role for acetylcholine receptor-activated 10 nitric oxide formation, as indicated by measurements of nitric oxide/nitrite release. Eur. 11 12 J. Pharmacol. 3, 235-242. 13 Yamada, M., Miyakawa, T., Duttaroy, A., Yamanaka, A., Moriguchi, T., Makita, R., 14 Ogawa, M., Chou, C.J., Xia, B., Crawley, J.N., Felder, C.C., Deng, C.X., Wess, J. 2001. 15 Mice lacking the M₃ muscarinic acetylcholine receptor are hypophagic and lean. 16 Nature 410, 207-212. 17 18

Vizi, E.S., Kobayashi, O., Torocsik, A. 1989. Heterogeneity of presynaptic muscarinic
receptors involved in modulation of transmitter release. Neuroscience 31, 259-267.

32/34 1 Figure legends Fig. 1. 2 Typical spontaneous contractions of proximal and distal colon strips isolated from 3 wild-type mice. Spontaneous contraction observed in colonic strips of the wild-type 4 5 mouse could be divided into two patterns depending on whether high-amplitude 6 **low-frequency** contractions were superimposed on **high-frequency** low-amplitude 7 contractions (Pattern A) or not (Pattern B). 8 9 Fig. 2. Typical contractile responses to carbachol in proximal colon strips from wild-type, 10 M₂R-KO, M₃R-KO and M₂/M₃R-KO mice. Single application of five increasing 11 concentrations of carbachol (10 nM, 100 nM, 1 µM, 10 µM and 100 µM, 1-h intervals) 12caused concentration-dependent contraction in wild-type, M₂R-KO and M₃R-KO mice, 13 but the contraction was non-sustained in M₃R-KO mice and the response was changed to 14 relaxation at 100 µM. In M₂/M₃R-KO mice, carbachol caused only relaxation of colonic 15 16 strips. 17 Fig. 3. 18 Comparison of log concentration-response curves for carbachol in proximal and distal 19

colonic strips from wild-type (WT, \bullet), M₂R-KO (\bigcirc), M₃R-KO (\blacktriangle) and

- 1 M_2/M_3R -KO (\triangle) mice. Concentration-response relationships were determined by
- 2 single application of carbachol to the proximal colon (A) and distal colon (B). Amplitude
- of the contraction is expressed as a percentage of that induced by 50 mM K⁺. Values are
- 4 means \pm S.E.M. of at least 5 muscle strips isolated from 5 different mice. **a:** P<0.05, **b:**
- P<0.01, The contractile responses in M_2R -KO mice were significantly different from
- 6 the corresponding contractions in wild-type mice.
- 8 Fig. 4.

- 9 Typical contractile responses to carbachol in distal colon strips from wild-type, M₂R-KO,
- 10 M₃R-KO and M₂/M₃R-KO mice. Five increasing concentrations of carbachol (10 nM, 100
- 11 nM, 1μ M, 10μ M 100μ M) were applied to the organ bath at 1-h intervals, and evoked
- mechanical responses were observed.
- 14 Fig. 5.

- 15 Contractile responses to McN-A-343 in isolated muscle strips from the proximal colon
- and distal colon of wild-type mice. A: McN-A-343 (100 µM) caused a non-sustained
- 17 contraction in the proximal colon and distal colon. Tetrodotoxin (TTX, 1 μM) enhanced
- the McN-A-343-induced contraction in the colon, which was abolished by atropine (1
- 19 μM). B: Effect of TTX (1 μM) on time course of the McN-A-343-induced contraction
- in the proximal colon (a) and distal colon (b). Amplitude of the contraction is

- expressed as a percentage of that induced by 50 mM K^+ . Abscissa is time (sec) after
- 2 application of McN-A-343 (arrow, 0sec). Values are means±S.E.M. of at least 5
- 3 muscle strips isolated from 5 different mice. a: P<0.05, b: P<0.01, Significantly
- 4 different from the corresponding control values.

- 6 Fig. 6.
- 7 Mechanical responses to McN-A-343 in isolated muscle strips from the proximal colon
- and distal colon of M₂/M₃R-KO mice. A: Typical mechanical responses to McN-A-343
- 9 (100 nM-100μM) applied singly at 1-h intervals in the the proximal colon and distal colon
- from M₂/M₃R-KO mice. B: Comparison of log concentration-response curves for
- 11 McN-A-343 in colonic strips from wild-type mice (\bullet) and M₂/M₃R-KO mice (\bigcirc).
- Mechanical responses were evaluated by comparison of AUC (for 5 min) before and after
- application of McN-A-343. Relative AUC (%) = $100 \times ((B-A)/C)$. A is AUC before
- application of McN-A-343 (control) and B is AUC after application of McN-A-343. C
- is AUC of 50 mM K⁺-induced contraction. Values are means±S.E.M. of at least 5 muscle
- strips isolated from 5 different mice. a: P<0.05, b: P<0.01, Significantly different from
- 17 that of wild-type mice.

Table 1 Comparison of high-amplitude spontaneous contractions observed in the proximal colon and distal colon of wild-type, M_2R -KO, M_3R -KO and M_2/M_3R -KO mice

	Wild-type	M_2R -KO	M ₃ R-KO	M_2/M_3R -KO	
Proximal colon		, -	_		
Frequency (contractions/10 min)	3.1±0.3 (n=17)	6.6±1.4 (n=5)	3.8±0.7 (n=4)	2.9±0.32 (n=6)	
Amplitude (% to 50 mM K ⁺)	105±7.1 (n=17)	49±6.1 ^a (n=5)	58±8.4° (n=4)	54±9.9° (n=6)	
Distal colon					
Frequency (contractions/10 min)	3.4±0.3 (n=15)	5.7±1.6 (n=5)	4.5±0.9 (n=4)	3.8 (n=2)	
Amplitude (% to 50 mM K [±])	91.6±8 (n=15)	47±10.6 ^a (n=5)	61±15 ^a (n=4)	61 (n=2)	

Each value is the mean or mean \pm S.E.M of respective experiments. Amplitude of large spontaneous contraction is indicated as percentage of 50 mM K⁺-induced contraction in each colonic strip. **a:** P<0.05 compared with the wild-type.

Effects of tetrodotoxin, pirenzepine and L-NAME on the contraction induced by

Table 2

McN-A-343 in colonic strips isolated from wild-type mice Relative contraction (%) Control Tetrodotoxin(1 µM) Pirenzepine (100 nM) L-NAME(100 µM) Proximal colon $10 \mu M$ 39.7±7.9 62.5 ± 7.9^{a} 66.1±13.8^a 71.1 ± 16.6^{a} 85.2 ± 13.3^{b} 75.4 ± 13.6^{b} $100 \mu M$ 42.7 ± 3.7 64.5±13.3^a Distal colon 106 ± 16^{b} 123±31.8^b $10 \mu M$ 51.0±8.5 93.0 ± 11.8^{a} <u>100 μΜ</u> $142.1\pm26.2^{\underline{b}}$ $125.4\pm1.1^{\underline{a}}$ 141.6 ± 27.9^{b} 63.9±10.4

Values are means \pm S.E.M. of over 4 experiments. Contractile responses were normalized by the AUC of 50 mM K⁺-induced contraction (for 5 min) and expressed as percentage contraction. **a:** P<0.05, **b:** P<0.01 **compared with the control responses.**

Table 3

Effects of tetrodotoxin, pirenzepine and L-NAME on the relaxation induced by McN-A-343 (10 μ M) and bethanechol (100 μ M) in colonic strips isolated from M₂/M₃R-KO mice

<u>—=====</u>	Relative relaxation (%)					
	Control	Pirenzepine (100 nM	1) Tetrodotoxin (1 μM)	L-NAME(100 μM)		
Proximal colon						
McN-A-343	14.7±1.7	-13.7±6.7 ^b	4.2±0.83 ^b	6.6±1.4 ^a		
Bethanechol	26.6±3.5	6 4.4±6.4 ^a	$5.5{\pm}1.6^{a}$	8.2±3.3 ^a		
Distal colon						
McN-A-343	21.8±3.8	-6.3±1.9 ^a	1.9±0.9 ^b	0.8 ± 0.9^{b}		
Bethanechol	33.2±5.9	4.3 ± 1.2^{a}	$0.74\pm1.1^{\frac{a}{}}$	10.9 ± 3.4^{a}		

Values are means \pm S.E.M. of 4 experiments. Relaxation was evaluated by comparison of AUC of colonic strips before and after application of muscarinic receptor agonists. Relative relaxation = $100 \times (1-B/A)$. A is AUC (for 5 min) before application of agonists (control) and B is AUC after treatment with agonists. B/A indicates change of AUC by agonists. Therefore, a negative value of relative relaxation (B > A) represents increase in AUC (contraction) by agonists. a: P < 0.05, b: P < 0.01 compared with control responses.

Fig. 1

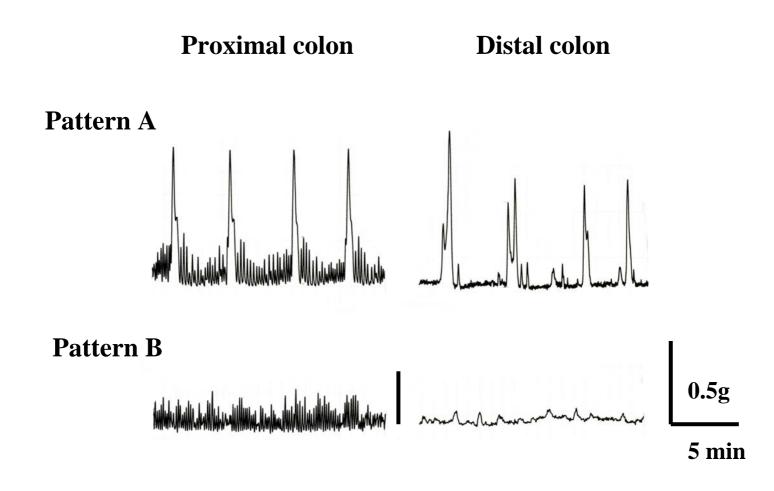


Fig. 2

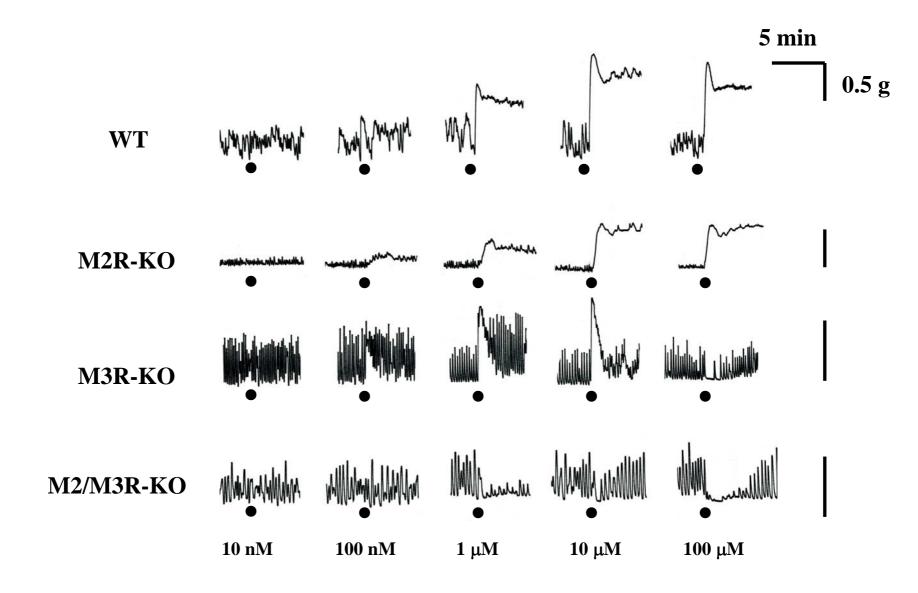


Fig. 3

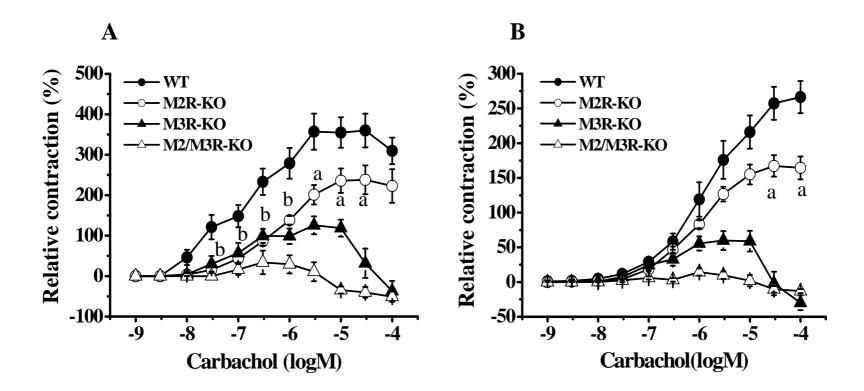


Fig. 4

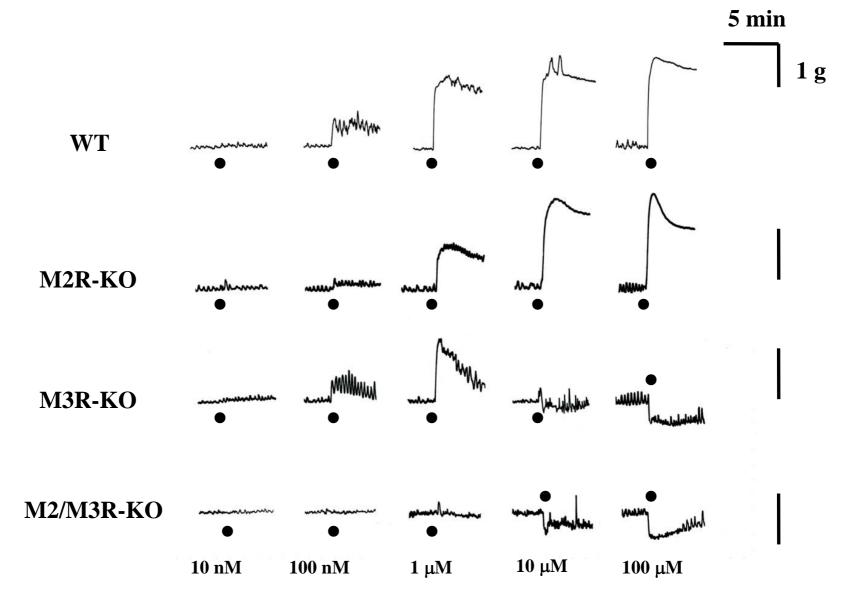
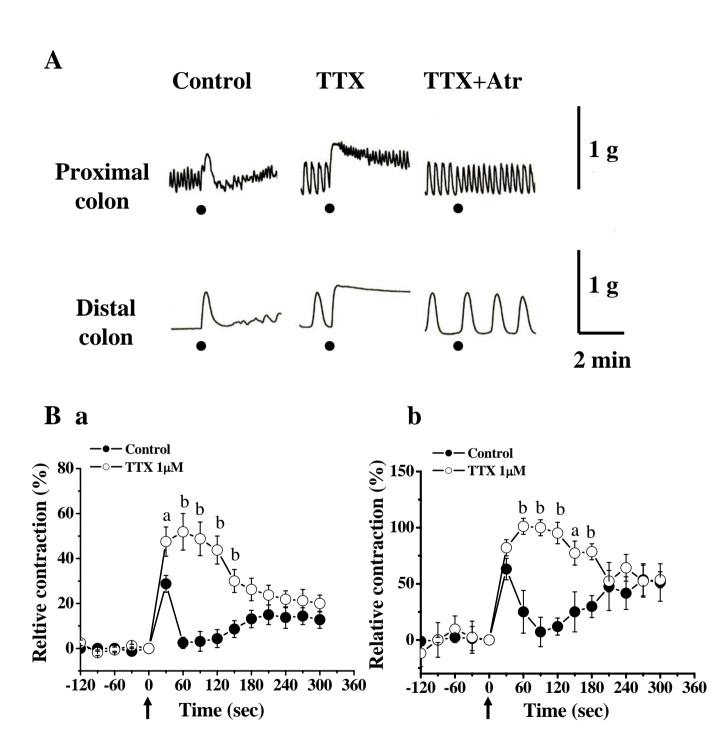


Fig.5



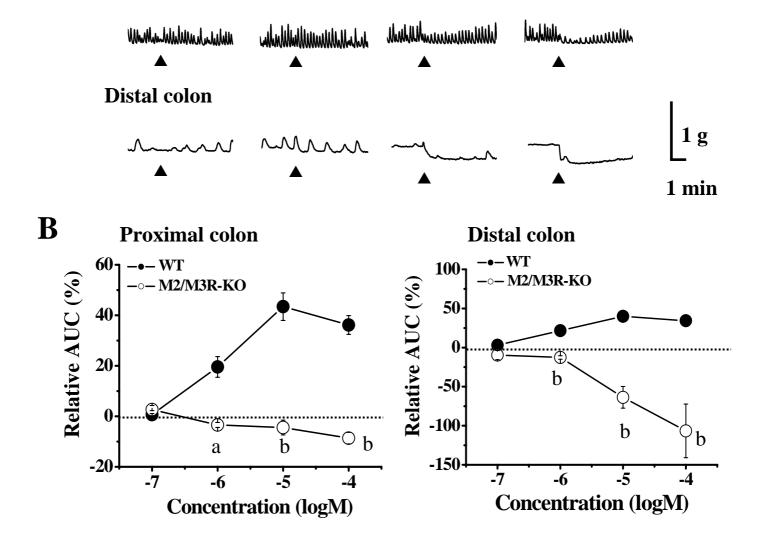


Fig. 6

