O3E1-2 Synergistic activation of receptoroperated cationic channels by M₂ and M₃ muscarinic receptors in mouse ileal smooth muscle cells.

<u>Takashi Sakamoto</u>¹, Toshihiro Unno², Hayato Matsuyama², Takio Kitazawa³, Tetsuro Taneike³, Masahisa Yamada⁴, Wess Jurgen⁵, Seiichi Komori²

¹Dept. Patho Vet Sci., Gifu Univ. Unite Grad Sch Vet Sci, 1-1 Yanagido, Gifu 501-1193, Japan, ²Lab. Pharmacol., Dept. Vet. Med., Gifu Univ., 1-1 Yanagido Gifu, 501-1193, Japan, ³Dept. Pharmacol., Fac. Vet. Med., Rakuno Gakuen Univ., Ebetsu, Hokkaido 069-8501, Japan, ⁴Lab. Neurogenetics, Brain Sci Inst., RIKEN, Saitama, 351-0198, Japan, ⁵Lab Bioorganic Chem., NIH-NIDDK, Bethesda, MD 20892, USA

In visceral smooth muscles, muscarinic acetylcholine receptor activation opens cationic channels, resulting in excitation and contraction. To shed light on this signal pathway, we analyzed cationic channel activity in gut myocyte derived from M2 or M3 muscarinic receptor knockout (KO) mice. In voltage-clamped ileal smooth muscle cells from wild-type (WT) mice, carbachol (CCh; 100 μ M) activated a sustained cationic channel currents (Icat). In contrast, the amplitudes of Icat in cells from M_2 -KO and M_3 -KO mice were less than 11% of the amplitude of WT Icat, indicating that WT Icat is not a simple mixture of M_2 and M_3 receptor responses. Strikingly, no appreciable current was observed in cells from M₂/M₃-double KO mice. Single channel analysis revealed that CCh activated 68 pS and 124 pS cationic channels in WT cells, and that the 124 pS channel was opened via stimulation of only M3 receptor, whereas the 68 pS channel via both M₂ and M₃ receptors in such a way that M₃ receptor permissively opens the channels, and M₂ receptor synergistically transmits the open state to a long-lasting mode. These results provide novel insights into the regulation of visceral smooth muscle cationic channel activity.