A remark on automorhisms of separable algebras over Artinian rings

Ryo SAITO*

(May, 1976)

1. Introduction:

Let A be a separable R-algebra, B a separable R-subalgebra of A and σ be any R-algebra monomorphism from B into A. In [2],[3], and [4], the conditions under which the σ can be extended to an inner automorphism of A were studied. The purpose of this note is to prove the following theorem.

Theorem (Theorem (2.2)) Let R be a commutative Artinian ring, A a central separable R-algebra and B an R-subalgebra of A such that ${}_B B \otimes_R^{\circ} B_B$ is isomorphic to ${}_B B_B^{(t)}$ for some integer t. Then if ${}_B A$ is projective, any R-algebra monomorphism σ from B into A can be extended to an inner automorphism of A.

Throughout this note, all rings have an identity 1, all modules over a ring $({}_{A}M)$ will mean a left A-module M) are unitary and a subring of a ring contains the identity of the ring. We consider a ring homomorphism which maps 1 to 1.

We give some definitions and notations before we state its proof.

- (1) Semi-local (reap. Local) ring is a commutative ring which has a finite number of (resp. only one) maximal ideals. It is well known that a commutative Artinian ring is a semi-local ring.
- (2) Let A be any ring, and ${}_{A}M$ and ${}_{A}N$ be any left A-modules. We write ${}_{A}M|_{A}N$ if ${}_{A}M$ is isomorphic to a direct summand of a direct sum of a finite number of copies of ${}_{A}N$.
 - (3) ${}_{A}N^{(t)}$ is the direct sum of t-copies of ${}_{A}N$.
- (4) We call a ring A a quasi-Frobenius ring when A is a left Artinian ring and ${}_{A}A$ is an injective left A-module. ([6] p.12)
- (5) Let A be an R-algebra, B a subalgebra of A and σ be any R-algebra monomorphism from B into A. A can be regarded canonically as a left B-module. Moreover A can be regarded as a new left B-module by $b*a=\sigma(b)a$. This new left B-module is written as $B \sigma A$. It is well known that σ can be extended to an inner automorphism

^{*}Lab. of Mathematics, The College of Dairying, Ebetsu, Hokkaido, Japan

2 Ryo Saito

monomorphism σ from B into A.

of A if and only if A is isomorphic to ${}_{\sigma}A$ as a left $B \underset{R}{\otimes} A^{\circ}$ -module, where A° is an opposite ring of A. ([7]). Here we define the product of an element $b \otimes a^{\circ}$ of $B \underset{R}{\otimes} A^{\circ}$ and an ement x of A as follows.

$$(b \otimes a^{\circ})x = bxa$$
 in A
 $(b \otimes a^{\circ}) * x = \sigma(b)xa$ in σA

2. Proof of the theorem

Lemma (2.1) Let R be a commutative Artinian ring, A an R-algebra which is a finitely generated R-module and B be an R-subalgebra of A. Then if there exists an R-algebra D which contains B and an integer t such that $D \bigotimes_{R} B$ is isomorphic to $B^{(t)}$ as a B-B-bimodule, A is isomorphic to σA as a left B-module for any R-algebra

Proof. As A is isomorphic to ${}_{\sigma}A$ as an R-module, $D \underset{R}{\otimes} A$ is isomorphic to $D \underset{R}{\otimes} {}_{\sigma}A$ as a left D-module. Moreover the following diagram is commutative and the all arrows are left D-isomorphisms

Since ${}_BD \underset{R}{\otimes} B_B$ is isomorphic to ${}_BB_B^{(t)}$, ${}_BA^{(t)}$ is isomorphic to ${}_{B\sigma}A^{(t)}$.

Since B is an Artinian ring and ${}_{B}A$ is finitely generated, ${}_{B}A$ and ${}_{B\sigma}A$ are the direct sum of a finite number of indecomposable left B-modules. If we put

$$_{B}A = U_{1} \oplus \cdots \oplus U_{n}$$

 $_{B\sigma}A = V_{1} \oplus \cdots \oplus V_{m},$

 $(U_1 \oplus \cdots \oplus U_n)^{(t)}$ is isomorphic to $(V_1 \oplus \cdots \oplus V_m)^{(t)}$. By Krull-Remak-Schmidt-Azumaya's theorem, n equals m and U_i is isomorphic to $V_{\pi(i)}$ where π is a permutation of $\{1, 2, \dots, n\}$. Hence ${}_BA$ is isomorphic to ${}_{B\sigma}A$. Q.E.D.

Theorem (2.2) Let R be a commutative Artinian ring, A a central separable R-algebra and B be R-subalgebra of A. Then if there exists an integer t such that ${}_{B}B \otimes_{R}^{\otimes} B_{B}$ is isomorphic to ${}_{B}B_{B}^{(t)}$ as a B-B-bimodule and if ${}_{B}A$ is projective, any R-algebra monomorphism σ from B into A can be extended to an inner automorphism of A.

Proof. By Lemma (2.1), ${}_BA$ is isomorphic to ${}_{B\sigma}A$ and ${}_{B\sigma}A$ is projective. Moreover ${}_CA$ is isomorphic to ${}_{C\sigma}A$ where C is the center of B. Since A is a separable R-algebra, ${}_{A\otimes_BA^\circ}A|_{A\otimes_BA^\circ}A\otimes_BA^\circ$. Hence ${}_{B\otimes_BA^\circ}A|_{B\otimes_BA^\circ}A\otimes_BA^\circ$ and ${}_{B\otimes_BA^\circ}A\otimes_BA^\circ$. On the

other hand, ${}_BA|_BB$ and ${}_{B\sigma}A|_BB$ so ${}_{B\otimes A^\circ}A|_{B\otimes A^\circ}A\otimes A^\circ|_{B\otimes A^\circ}B\otimes A^\circ$ and ${}_{B\otimes A^\circ\sigma}A|_{B\otimes A^\circ\sigma}A\otimes A^\circ|_{B\otimes A^\circ\sigma}A\otimes A^\circ|_{B\otimes A^\circ\sigma}A$. Therefore ${}_{B\otimes A^\circ\sigma}A$ and ${}_{B\otimes A^\circ\sigma}A$ are projective. By [8] Theorem 2.2, B is a separable R-algebra and hence $B\otimes A^\circ$ is a central separable algebra over semil-local ring C. Thus by [2] Theorem 1.1, ${}_{B\otimes A^\circ}A$ is isomorphic to ${}_{B\otimes A^\circ\sigma}A$. Hence σ can be extended to an inner automorphism of A. Q.E.D.

Remark. In [1], Azumaya called an R-algebra B which satisfies the condition that $_{B\otimes A^{\circ}}A$ is projective relatively separable in A.

Lemma (2.3) Let S be a commutative quasi-Frobenius ring and M be a faithful S-module. Then S is isomorphic to a direct summand of M as an S-module.

Proof. In the case where S is a local ring, the socle S_o of S is simple. Since M is faithful, $S_oM \neq 0$. Hence there exists an element $m_o \in M$ such that $S_om_o \neq 0$. We can define an S-module homomorphism μ from S into $M(\mu(s) = sm_o, s \in S)$ and the kernel of μ equals 0. Since S is an injective S-module, S is isomorphic to a direct summand of M as an S-module. Next when S is an arbitrary commutative Artinian ring, we can decompose S into a direct sum of local rings. Let $S = S_1 \oplus \cdots \oplus S_n$ be such a decomposition. Since S is a quasi-Frobeius ring, each S_i is a quasi-Frobenius ring. In this case, M is equal to $S_1M \oplus \cdots \oplus S_nM$ and each S_iM is a faithful S_i -module. By the first part of of this lemma, each S_iM is a direct sum of U_i and V_i where U_i is isomorphic to S_i as an S_i -module. Then we have

$${}_{s}M = \bigoplus_{i=1}^{n} S_{i}M = \bigoplus_{i=1}^{n} (U_{i} \oplus V_{i}) \cong \left(\bigoplus_{i=1}^{n} U_{i}\right) \oplus \left(\bigoplus_{i=1}^{n} V_{i}\right) \cong {}_{s}S \oplus \left(\bigoplus_{i=1}^{n} V_{i}\right). \text{ Q.E.D.}$$

Proposition (2.4) (c.f. (9] Theorem3) Let S be a commutative R-algebra which is a finitely generated projective R-module. If $A = Hom_R(S,S)$ and S is a quasi-Frobeninius ring, the following conditions are satisfied.

- (1) $V_A(S) = S$ where $V_A(S) = \{a \in A | sa = as \text{ for all } s \in S\}$.
- (2) Every R-algebra monomorphism from S into A can be extended to an inner automorphism of A.
- Proof. (1) $V_A(S) = V_{Hom_R(S,S)}(S) = Hom_s(S,S) = S$.
- (2) Let σ be an arbitrary R-algebra monomorphism from S into A. Then S has two left S-module structures. The first is an ordinary one and the second is defined by $s_*x = \sigma(s)x$ for $s \in S$ and $x \in S$. We denote the second left S-module S by σS . σS is a faithful left S-module. Hence by lemma (2.3), S is isomorphic to a direct summand of σS as a left S-module and also as an R-module. $\sigma S \cong_s S \oplus_s X$. For any maximal ideal \mathfrak{M} of R, we have $R_{\mathfrak{M}} \otimes_R \sigma S \cong (R_{\mathfrak{M}} \otimes_R S) \oplus (R_{\mathfrak{M}} \otimes_R X)$ and rank $R_{\mathfrak{M}}(R_{\mathfrak{M}} \otimes_R S) = \operatorname{rank} R_{\mathfrak{M}}(R_{\mathfrak{M}} \otimes_R S)$ where $R_{\mathfrak{M}}$ is the localization at \mathfrak{M} . Hence $R_{\mathfrak{M}} \otimes_R X = 0$ and X = 0; that is S is isomorphic to σS as a left S-module. We put this isomorphism from ${}_S S$ to ${}_S \sigma S$ a. Then a is an invertible element of

4 Ryo Saito

 $A = \text{Hom }_{R}(S,S)$ and for any $s,x \in S$, $(as)(x) = a(sx) = s_{*}(ax) = (\sigma(s)a)(x)$. Hence $as = \sigma(s)a$. That is $\sigma(s) = asa^{-1}$. Q.E.D.

Remark. It is known that commutative QF-1 Artinian rings are quasi-Frobenius rings. ([5]).

The present author wishes to express his heartfelt thanks to Prof. T. Onodera of Hokkaido University for his constructive advice.

References

- [1] G. Azumaya ; Algebras with Hochschild dimension ≤ 1 . Ring Theory, Gordon, Academic (1972) 9.27
- [2] L. N. Child and F. R. DeMeyer; On automorphisms of separable algebras. Pacific J. Math. 23 (1967) 25-34.
- [3] F. R. DeMeyer; Projective modules over central separable algebras. Canad. J. Math. 21 (1969) 39-43
- [4] F. R. DeMeyer; On automorphisms of separable algebras II. Pacific J. Math. 32 (1970) 621-631.
- [5] S. E. Dickson and K. R. Fuller; Commutative QF-1 Atinian rings are QF. Proc. Amer. Math. Soc. 24 (1970) 667-670.
- [6] S. Eilenberg and T. Nakayama; On the dimention of modules and algebras II. Nagoya Math. J. 9 (1955) 1-16,
- [7] S. Endo and Y. Watanabe; The theory of algebras over commutative rings. Mathematics 21 (1969) 24-41. (in Japanese)
- [8] K. Hirata; Some type of separable extentions of rings. Nagoya Math. J. 33 (1968) 107-115.
- [9] N. Jacobson; Generation of separable and central simple algebras. J. Math. Pures. Appl. 36 (1957) 217-227.