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A note on automorphisms of separable closures

of commutative rings

Ryo SA1to*
(February, 1977)

§1. Introduction

Throughout this note, all rings are commutative and have an identity element 1.
Let R be a ring, 2 be a separable closure of R, and G be the group of all R-algebra
automorphisms of . Then a continuous function f: X(2)— X(R)(x=C(p)~ f(x)
=C(PN R)) is defined. Let Ryxy=R/Ix(f(x)), 2rix)=2Rr Rysx) and 2x=82/Io(x)
(Definitions are found in §2.). We can define two canonical epimorphisms as follows.

& 250~ 2x (w70~ (w7)x)

u:2-2x(w->wx)
As Qs a separable closure of R, Q) is a locally strongly separable extension of Ry x).
We set u(R)=g(Rsx)=R(x); that is R(x)={rx€ Q«|r€ R}). Then Q. is a
separable closure of R(x) (Proposition 1). Let G(x)be the group of all R(x)-algebra
automorphisms of 2, and Gy={c€ G| for any idempotent e¢€ @, if ¢€p, then g(e)
€p}. Then Gy is a subgroup of G (Lemma 2), and any ¢€ G, induces an automor-
phism ¢ of 2, (Lemma 3). Let G,={6/0€Gv}TG(x). The main theme of this note
is to investigate the structure of Gy, Gy, G and G(x).

§ 2. Definitions and notations

In this section, insofar as required, we describe definitions and notations which
are found in [1]or [3]

(1) A rning is called connected if it has no idempotents except 0 and 1.

(2) A ring extension S/ R is called a strongly separable extension if S is a sepa-
rable R-algebra and a finitely generated projective R-module. A ring extension S/R
is called a locally strongly separable extension if S is the direct limit of strongly separa-
ble extensions of R.

(3) Let X(R) be the space of the connected components of Spec (R). Then
X(R) is a profinite topological space ([ 3] p. 26). For x=C(p) € X(R),we set Ix(x)
=the ideal genrated by idempotents of p, where C(p) is the connected component
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of p € Spec (R). Iz(x) takes the form of

Ir(x)={releis an idempotent of p,r€ R}.
Further we set Rx=R/Izx(x). Rx is a connected ring and a flat R-module ([ 3] pp.
33-34). For an R-module M, we set Mx=M@rRx=M/Iz(x)M. For any meM, we
identify m,, m&®1, and 7.

(4) For a ring extension S/ R, S is called a componentially locally strongly sepa-
rable extension if for any x€ X(R), Sx is a locally strongly separable extension of
Rx (3] p. 79).

(5) Let R be a connected ring. R is called separably closed ring if its only con-
nected strongly separable extension is itself. For a connected ring R, there exists u-
niquely up to isomorphisms a ring extension of R which has the following properties.
Its ring extension is

(a) connected,

(b) a locally strongly separable extension of R,

(c) and separably closed.
This ring extension is called a separable closure of R, and is denoted by 2 ([1] p. 103
and [3] p. 51).

(6) Let S be a ring (not necessarily connected). S is called separably closed if
for any componentially locally strongly separable extension T of S, there exists an S-
algebra homomorphism from 7" to S. If S is separably closed, then for any x € X(S),
Sx 1s separably closed in the sense of (5) ([3] p. 90, 91). Let S be a componentially
locally strongly separable extension of R, S is called minimal if for any componentially
locally strongly separable extension 7" of R, every R-algebra homomorphism from S
to 7" is a monomorphism ([ 3] p. 92). For any ring R, there exists uniquely up to iso-
morphisms a ring extension of R which has the following properties. Itsring extension
Is

(a) minimal,
(b) a componentially locally strongly separable extension of R,
(c) and separably closed.
This ring extension is called a separable closure of R, and is dented by @ ([3] p. 93).

§3. Results

Proposition 1. @, is a separable closure of R(x).

Proof By §2 (3) and (6), 2x is connected and separably closed. As Io(x) is
generated by idemptents of 2, Ker g={w®/x) € Qsm|w € Io(x)} is generated by idem-
potents of /). Hence by [ 3] p. 48 Proposition 3.5, 2, is a locally strongly separable
extension of R(x). Thus Q4 is a separable closure of R(x) (See §2(5)).

Lemma 2. Gy is a subgroup of G, and if C(p)=C(q), then Gy= Ga.
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Proof. First we prove that
Gor={0 € G| for any idempotent e€ Q, if o(e) €p, e€p}.

Assume that g€ G, and g(e) €p. If e€ p,then 1—e€phence o(1—e)=1—o(e) €p.
Thus, 1=1—o(e)+o(e) €p. This is a contradiction. Hence e € p. Conversely, we
assume for g€ G that for any idempotent e € @, if g(e) €p, then eep. Let e€ pand
o(e)&p. P31—o(e)=0(1—e). Thus, 1—e€p. Thisis a contradiction. Hence o(e)
€p. Obviously Gy is closed under the multiplication. Let ¢ € Gy, For any idempotent
e€p, o(o ' (e))=e€p. Hence by the first part 67 *(e) €p. So ¢! €Gy. Conseque-
ntly G,is a subgroup of G. When C(p) = C(q), the set of idempotents of p equals
the set of idempotents of q ([3] p. 26). Hence Gy= G..

Lemma 3. Every element g€ Gy induces an R(x)-algebra automorphism of
Q. This induced R(x)-algebra automorphism is written by &

Proof. Obviously 6(wx)=0c(w)x is well defined.
o

Q— Q W — a(w)
Qx— 2« Wx ——> O'(w)x:(i(wx)

We assume that ¢(w)x=0. Then ¢(w) € Io(x) and o(w)=0c(w)e’ for some idem-
potent ¢’ €p. So w=0"o(w))=0(o(w)e’)=ws '(&’) € Io(x) and wx=0. Con-
sequently & is a monomorphism. For any w’% € 24, we choose w as ¢(w)=w’. Then
we have 6(wx)=0(w)x= w5 and hence & is an epimorphism.

Let G, ={dlo€ Gy} and G(x) be the full group of R(x)-algebra automorphisms
of Qx.

Proposition 4.

(1) For any g€ G, ¢ induces an R(x )-algebra automorphism of Q, if and only if
o€ Gv.

(2) For any a€ G(x),a is induced by an element of G if and only if g€ Go.

Proof. (1). We assume that ¢ induces an R(x)-algebra automorphism & of Q.

Then the following diagram is commutative.

g
QL —

2
Qx—> O«
For any idempotent e €p, 0=d(ex)=o(e)x. Hence g(e) € Io(x)C P and g €Gy.
The converse holds by Lemma 3.

(2). This 1s trivial.
By [1] p. 107, we know that G(x)=1imG(S) where S is a strongly separable
«—
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extension of R(x) in 24, and G(S) is the set of all R(x)-algebra homomorphisms
from S to 2. G(S)is a finite set. For any strongly separable extension S of R(x)
In Qx, we set
u'(S)={we 2u(w)e S}
and
G(u"(S))z{p‘D is an R-algebra rrlonomorphism from %7 '(S) to .Q}
such that p(Zlo(x))=1Io(x).

Each #7'(S) is an R-subalgebra of 2 and {«#~!(S)} is a directed set under inclusion.

Theorem 5.
(1) @=limz"'(S)
(2) 2x=1imS
(3) Any Jement of G(z~*(S)) induces an element of G(S).
(4) Gy Zli_mG(u_l(S))
Proof. (1), (2) and (3) are trivial.
(4) We have
for any strongly separable
extensions S, and S, such
that SiCSs, cu-ysy |2 '(S))
(restriction map) = g u-i(s,).
For any o€, obviously (glu'(S))€ Li_mG(u“(S)), Conversely for any
(ou1s ) €limG(u~'(S)), we show the map

«—

0:2-82 (w—ouvws(w)) (wx€S)
belongs to Gy, Let wx€ S; and wy € S, for strongly separable extensions S, and S,.
Then there exists a strongly separable extension S such that Si1CS and S,C S, and
du-sy (wW)=0 u-ws(w)=0cutsy (w). Hence ¢ is independent of the choice of
S. Since each ¢ u-1s) is a monomorphism, ¢ is a monomorphism. Let (as) be the
element of G(x) such that each a5 is induced by ¢ u-ys). Forany o’ € 9 there ex-
ists w€ 2 such that ((as) wx)=w% We choose a strongly separable extension S
which satisfies wx € S. Then ou-is) (w)x=as(wx)=wk ;that is w' — 6, (w)
€ Io(x). Hence there exists t€ Io(x) such that W =0y (W)= 0,46 (1);
that is w'=0,., (w+¢), and ¢is an epimorphism. For any idempotent e€p, e, =0.
Hence for any strongly separable extension S, o(e)x=0us (e)x=as(ex)= 0 and
ouus(e) € Io(x)Cp. Consequently g€ Gy, and

£ Gy~ ImG(u™(S)) (o~ (alu'(S)))

li_rnG(u"(S))Z (cuws) €EMIG(uY(S))

and

nlEnG(u"(S))* GU ((O'uAl(s))_'(Cl)_’O'uAl(S)(w)))
are inverse bijections each other.

G(x)zl‘i_mG(S) (resp. Gu=Li£nG(u"(S))) is a topological space under the
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standard topology (cf.[3]p. 58) ; that is, G(x) (resp. Gy) has the inverse limit topology
induced from the discreate toplogy on each G(S) (resp. G(« '(S))). On the other
hand, G(x) (resp. G) has the finite topology. The element of the subbasis for the neigh-
borhoods of a(resp. o) takes the form of {8 € G(x)|a( =B(wx)}resp. {7€G|o(w
=(w)}) (2]p. 29).

Lemma 6. G(x) (resp. G) is a topological group under the finite topology.

Proof. G(x) (resp. G) is a subgroup of the automorphism group A of £, (resp.
9) as an Abelian group. Since A is a topological group under the finite topolgy ([ 2]
p. 30), G(x) (resp. G) is a topological group under the finite topology.

Proposition 7. In G(x),the finite topology is equivalent to the standard topology.
Proof. The fundamental neighborhood system of a=(as)in G(x) under the

standard topology takes the form of
U=(as, X Xas,X]I G(S)NG (x).

S£81,52,°+%, Sn
Let{s;|j=1,2,--,m:} be the set of generators of the strongly separable extension S;

(z=1,2,--,n) as an R(x)-module. Then we have
U= ﬂ{Be G(x)|B(si5)=alsi)}.
1”122l
GoT2ssmy

Hence the finite topology is stronger than the standard topology. Conversely, let V'

={8€ G(x)|B(s)=a(s)} be any element of the subbasis of neighborhood of a and
s € S, for some strongly separable extension.
For any Re V
V=(8e G(x)Ig(s)=a()}2(8s, X [T, G(SHNG(x) 28

Hence V isan open set in G(x) under the standard topology and the standard topology
1s stronger than the finite topology.

Corollary 8. (cf. [ 1] p.107) G(x) is a topological group under the standard to-
pology.

Proposition 9. G, is a closed topological subgroup of G under the finite topology.

Proof. We will show that G¢ (complement in G) is open. Assume that g€ G,
Then there exists an idempotent e€ P such that o(e) € v.{z€ G|t(e)=0(e)} is an
open set in G which contains g, and we have {t€ G|t(e)=0c(e)}N Gv=@. Thus G,
1s closed in G.

Proposition 10. In Gy, the standard topology is stronger than the finite topology.
Proof. Using Theorem 5(1) and (4), we can prove in a similar manner to the second
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part of Proposition 7.

Proposition 11. G, is a topological group” under the standard topolgy.
Proof. We will show that the maps Gy X Gv— Gi((g, )= 07) and G~ G(o —

o~') are continuous. For any element of the subbasis of the neighborhoods
(orlu! (S,)XHS G(u'(S)))N Gy of o, we take the neighborhood
S*8

(Tlu"l(Sl)XysG(u'l(S)))ﬂ G» of 7and the neighborhood

(alu“(Sz)ng G(u (SN Gy of 0.
Here S, =#(S,).
Since 7(# '(S1))Cu ' (#(S1))=u"'(S:), we have
((a|u“(Sz)><£!S G(u ' (SHN Gu)((rlu“‘(Sl)nglG(u“(S)))ﬂ Gv)

c (orlu™'(S)) XQSIG(uq(S))) N Gy

Hence the map Gy X Gy— Gv((g,7)— o7) is continuous. For any element of the sub-

basis of the neighborhoods (o“lu’l(Sl)ng Glu ' (S))N Gy of 67!, let 67'(S))
=S,. Since o (% (S)Cu (67 (S1))=u""(S,), we have
[(olw (%1, G (D) Go| (o lu (S0 % T, Gl (SH)N Gy

Hence the map Gy~ Gv(o—07!) is continuous.

From the above considerations, we have the following Theorem.

Theorem 12. Let Gy[s] and Gu[f] be topological groups under the standard
topology and the finite topolgy respectively. Then. the following arrows are continuo-

us.

16»
Gols] —— G/ ]—> G(x)
Proof. 1¢, is continuous by Proposition 10. For any element of the subbasis of the
neighborhoods V ={a € G(x)|e(wx)=d(wx)} of & U={r€ Gv|t1(w)=0(w)} is a
neighborhood of . And for any 7€ U, we have 7€ VV, Hence — is continuous.

Corollary 13. If G(«~'(S)) is a finite set for each S, Gy is a closed subgroup of
G(x).

Proof. By the assumption G(2 '(S)) iscompact and hence G,,:Li_mG( u YS))
is compact. Hence G, is compact and closed G(x) (cf. [1] p. 107).

Proposition 14. If Jo(x) is a direct summand of @ every R(x)-algebra monomo-
rphism ¢ from 27 '(S) to £ which fixes the elements of Jo(x) is extended to an auto-
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morphism of Q.

Proof. By the assumption that 2= Io(x)®L (as 2-module), we have z '(S)
=To(x)®(LN 2 *(S))asu'(S)module)and S=u '(S) /Io(x)=LNu'(S) (as
R(x)-algebra). Let 1=e+f (e€lo(x),f € LNu"'(S)). Since e+f=1=0(1)
=o(e)+o(f)=e+a(f),o(f)=f. For any ke LNu '(S), since k=kf, o(k)
=o(k)o(f)=0(k)f € L. Hence o(LNu'(S))CL. The R(x)-algebra homomo-
rphism & from S to @, which is induced by ¢ is extended to an automorphism & of £x
(1] p. 106).

p = =L =
f>—» _Q/[g(\xfj—q—» _Qx>—0——»gx>i»g/]g(x)>——»[,
i ) ) o)
LNu(SH»r>» u“(S)/Ig(x)HE/
[ JLNu'(S)

Let 0*= p~'eq '-6-q-p. Then the map Q-2 (a+b—a+0o*(b))(a€lo(x) be L)
is an R-algebra automorphism and is an extention of o.

Proposition 15. Let Q be a separable closure of R and %~ be an R-algebra endo-
morphism of £ such that for some x € X(Q), h(Io(x))=1Io(x). Then Ak is an auto-
morphism.

Proof. The induced R(x)-algebra endomorphism 7 of 2, is an automorphism
([1] p. 106). For any ' € 2, there exists w € 2 such that Z(w)x= A(wx)=wk.
Hence o' — h(w) € To(x). By the assumption, there exists f€ [g(x) such that
w' —h(w)=h(t). Hence h(w+t)=w’;that is, & is an epimorphism. By §2 (6),
h is a monomorphism (£ is minimal). Consequently % is an automorphism.
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