A note on automorphisms of separable closures of commutative rings

Ryo SAITO*

(February, 1977)

§ 1. Introduction

Throughout this note, all rings are commutative and have an identity element 1. Let R be a ring, \mathcal{Q} be a separable closure of R, and G be the group of all R-algebra automorphisms of \mathcal{Q} . Then a continuous function $f\colon X(\mathcal{Q})\to X(R)$ ($x=C(\mathfrak{p})\to f(x)=C(\mathfrak{p}\cap R)$) is defined. Let $R_{f(x)}=R/I_R(f(x))$, $\mathcal{Q}_{f(x)}=\mathcal{Q}\otimes_R R_{f(x)}$ and $\mathcal{Q}_x=\mathcal{Q}/I_{\mathcal{Q}}(x)$ (Definitions are found in § 2.). We can define two canonical epimorphisms as follows.

$$g: \mathcal{Q}_{f(x)} \to \mathcal{Q}_x (\omega \otimes r_{f(x)} \to (\omega r)_x)$$

$$u: \mathcal{Q} \to \mathcal{Q}_x (\omega \to \omega_x)$$

As \mathcal{Q} is a separable closure of R, $\mathcal{Q}_{f(x)}$ is a locally strongly separable extension of $R_{f(x)}$. We set $u(R) = g(R_{f(x)}) = R(x)$; that is $R(x) = \{r_x \in \mathcal{Q}_x | r \in R\}$. Then \mathcal{Q}_x is a separable closure of R(x) (Proposition 1). Let G(x) be the group of all R(x)-algebra automorphisms of \mathcal{Q}_x and $G_{\mathfrak{p}} = \{\sigma \in G | \text{ for any idempotent } e \in \mathcal{Q}, \text{ if } e \in \mathfrak{p}, \text{ then } \sigma(e) \in \mathfrak{p}\}$. Then $G_{\mathfrak{p}}$ is a subgroup of G (Lemma 2), and any $\sigma \in G_{\mathfrak{p}}$ induces an automorphism $\bar{\sigma}$ of \mathcal{Q}_x (Lemma 3). Let $\bar{G}_{\mathfrak{p}} = \{\bar{\sigma} | \sigma \in G_{\mathfrak{p}}\} \subset G(x)$. The main theme of this note is to investigate the structure of $G_{\mathfrak{p}}$, $\bar{G}_{\mathfrak{p}}$, G and G(x).

§ 2. Definitions and notations

In this section, insofar as required, we describe definitions and notations which are found in [1] or [3].

- (1) A ring is called connected if it has no idempotents except 0 and 1.
- (2) A ring extension S/R is called a strongly separable extension if S is a separable R-algebra and a finitely generated projective R-module. A ring extension S/R is called a locally strongly separable extension if S is the direct limit of strongly separable extensions of R.
- (3) Let X(R) be the space of the connected components of Spec (R). Then X(R) is a profinite topological space ([3] p. 26). For $x = C(\mathfrak{p}) \in X(R)$, we set $I_R(x)$ = the ideal genrated by idempotents of \mathfrak{p} , where $C(\mathfrak{p})$ is the connected component

^{*}Lab. of Mathematics, The College of Dairying, Ebetsu, Hokkaido, Japan

6 Ryo Saito

of $\mathfrak{p} \in \operatorname{Spec}(R)$. $I_R(x)$ takes the form of

 $I_R(x) = \{ re | e \text{ is an idempotent of } \mathfrak{p}, r \in R \}.$

Further we set $R_x = R/I_R(x)$. R_x is a connected ring and a flat R-module ([3] pp. 33-34). For an R-module M, we set $M_x = M \otimes_R R_x = M/I_R(x)M$. For any $m \in M$, we identify m_x , $m \otimes 1_x$ and \overline{m} .

- (4) For a ring extension S/R, S is called a componentially locally strongly separable extension if for any $x \in X(R)$, S_x is a locally strongly separable extension of R_x ([3] p. 79).
- (5) Let R be a connected ring. R is called separably closed ring if its only connected strongly separable extension is itself. For a connected ring R, there exists uniquely up to isomorphisms a ring extension of R which has the following properties. Its ring extension is
 - (a) connected,
 - (b) a locally strongly separable extension of R,
 - (c) and separably closed.

This ring extension is called a separable closure of R, and is denoted by \mathcal{Q} ([1] p. 103 and [3] p. 51).

- (6) Let S be a ring (not necessarily connected). S is called separably closed if for any componentially locally strongly separable extension T of S, there exists an S-algebra homomorphism from T to S. If S is separably closed, then for any $x \in X(S)$, S_x is separably closed in the sense of (5) ([3] p. 90, 91). Let S be a componentially locally strongly separable extension of R. S is called minimal if for any componentially locally strongly separable extension T of R, every R-algebra homomorphism from S to T is a monomorphism ([3] p. 92). For any ring R, there exists uniquely up to isomorphisms a ring extension of R which has the following properties. Its ring extension is
 - (a) minimal,
 - (b) a componentially locally strongly separable extension of R,
 - (c) and separably closed.

This ring extension is called a separable closure of R, and is dented by Ω ([3] p. 93).

§ 3. Results

Proposition 1. Q_x is a separable closure of R(x).

Proof By § 2 (3) and (6), Q_x is connected and separably closed. As $I_Q(x)$ is generated by idemptents of Q, Ker $g = \{\omega_{f(x)} \in Q_{f(x)} | \omega \in I_Q(x)\}$ is generated by idempotents of $Q_{f(x)}$. Hence by [3] p. 48 Proposition 3.5, Q_x is a locally strongly separable extension of R(x). Thus Q_x is a separable closure of R(x) (See § 2(5)).

Lemma 2. $G_{\mathfrak{p}}$ is a subgroup of G, and if $C(\mathfrak{p}) = C(\mathfrak{q})$, then $G_{\mathfrak{p}} = G_{\mathfrak{q}}$.

Proof. First we prove that

 $G_{\mathfrak{p}} = \{ \sigma \in G | \text{ for any idempotent } e \in \Omega, \text{ if } \sigma(e) \in \mathfrak{p}, e \in \mathfrak{p} \}.$

Assume that $\sigma \in G_{\mathfrak{p}}$ and $\sigma(e) \in \mathfrak{p}$. If $e \notin \mathfrak{p}$, then $1 - e \in \mathfrak{p}$ hence $\sigma(1 - e) = 1 - \sigma(e) \in \mathfrak{p}$. Thus, $1 = 1 - \sigma(e) + \sigma(e) \in \mathfrak{p}$. This is a contradiction. Hence $e \in \mathfrak{p}$. Conversely, we assume for $\sigma \in G$ that for any idempotent $e \in \mathcal{Q}$, if $\sigma(e) \in \mathfrak{p}$, then $e \in \mathfrak{p}$. Let $e \in \mathfrak{p}$ and $\sigma(e) \in \mathfrak{p}$. $\mathfrak{p} \ni 1 - \sigma(e) = \sigma(1 - e)$. Thus, $1 - e \in \mathfrak{p}$. This is a contradiction. Hence $\sigma(e) \in \mathfrak{p}$. Obviously $G_{\mathfrak{p}}$ is closed under the multiplication. Let $\sigma \in G_{\mathfrak{p}}$. For any idempotent $e \in \mathfrak{p}$, $\sigma(\sigma^{-1}(e)) = e \in \mathfrak{p}$. Hence by the first part $\sigma^{-1}(e) \in \mathfrak{p}$. So $\sigma^{-1} \in G_{\mathfrak{p}}$. Consequently $G_{\mathfrak{p}}$ is a subgroup of G. When $C(\mathfrak{p}) = C(\mathfrak{q})$, the set of idempotents of \mathfrak{p} equals the set of idempotents of \mathfrak{q} . [3] \mathfrak{p} . 26). Hence $G_{\mathfrak{p}} = G_{\mathfrak{q}}$.

Lemma 3. Every element $\sigma \in G_{\nu}$ induces an R(x)-algebra automorphism of \mathcal{Q}_x . This induced R(x)-algebra automorphism is written by $\bar{\sigma}$.

Proof. Obviously $\bar{\sigma}(\omega_x) = \sigma(\omega)_x$ is well defined.

$$\begin{array}{cccc}
\Omega & \xrightarrow{\sigma} & \Omega & & \omega & \longrightarrow & \sigma(\omega) \\
u & \downarrow & & \downarrow & & \downarrow \\
\Omega_x & \xrightarrow{\overline{\sigma}} & \Omega_x & & \downarrow & \downarrow \\
& & \omega_x & \longrightarrow & \sigma(\omega)_x = \bar{\sigma}(\omega_x)
\end{array}$$

We assume that $\sigma(\omega)_x=0$. Then $\sigma(\omega)\in I_{\mathcal{Q}}(x)$ and $\sigma(\omega)=\sigma(\omega)e'$ for some idempotent $e'\in\mathfrak{p}$. So $\omega=\sigma^{-1}(\sigma(\omega))=\sigma^{-1}(\sigma(\omega)e')=\omega\sigma^{-1}(e')\in I_{\mathcal{Q}}(x)$ and $\omega_x=0$. Consequently $\bar{\sigma}$ is a monomorphism. For any $\omega_x'\in\mathcal{Q}_x$, we choose ω as $\sigma(\omega)=\omega'$. Then we have $\bar{\sigma}(\omega_x)=\sigma(\omega)_x=\omega_x'$ and hence $\bar{\sigma}$ is an epimorphism.

Let $\overline{G}_{\nu} = {\{\overline{\sigma} | \sigma \in G_{\nu}\}}$ and G(x) be the full group of R(x)-algebra automorphisms of Ω_x .

Proposition 4.

- (1) For any $\sigma \in G$, σ induces an R(x)-algebra automorphism of Q_x if and only if $\sigma \in G_{\mathfrak{p}}$.
 - (2) For any $\alpha \in G(x)$, α is induced by an element of G if and only if $\alpha \in \overline{G}_{\mathfrak{p}}$.

Proof. (1). We assume that σ induces an R(x)-algebra automorphism $\bar{\sigma}$ of Ω_x . Then the following diagram is commutative.

$$\begin{array}{ccc}
\Omega & \xrightarrow{\sigma} & \Omega \\
u \downarrow & \bar{\sigma} & \downarrow u \\
\Omega_x & \xrightarrow{\bar{\sigma}} & \Omega_x
\end{array}$$

For any idempotent $e \in \mathfrak{p}$, $0 = \bar{\sigma}(e_x) = \sigma(e)_x$. Hence $\sigma(e) \in I_{\mathfrak{g}}(x) \subset \mathfrak{p}$ and $\sigma \in G_{\mathfrak{p}}$. The converse holds by Lemma 3.

(2). This is trivial.

By [1] p. 107, we know that $G(x) = \lim_{x \to \infty} G(S)$ where S is a strongly separable

8 Ryo Saito

extension of R(x) in Ω_x , and G(S) is the set of all R(x)-algebra homomorphisms from S to Q_x . G(S) is a finite set. For any strongly separable extension S of R(x)in Ω_x , we set

$$u^{-1}(S) = \{ \omega \in \Omega | u(\omega) \in S \}$$

and

$$G(u^{-1}(S)) = \left\{ p \middle| p \text{ is an } R\text{-algebra monomorphism from } u^{-1}(S) \text{ to } \Omega \right\}$$

such that $p(I_{\mathcal{Q}}(x)) = I_{\mathcal{Q}}(x)$.

Each $u^{-1}(S)$ is an R-subalgebra of Q and $\{u^{-1}(S)\}$ is a directed set under inclusion.

Theorem 5.

- (1) $\Omega = \lim u^{-1}(S)$
- (2) $\Omega_x = \lim S$
- (3) Any element of $G(u^{-1}(S))$ induces an element of G(S).
- (4) $G_{\mathfrak{p}} = \lim G(u^{-1}(S))$

Proof. (1), (2) and (3) are trivial.

(4) We have

$$\lim_{\leftarrow} G(u^{-1}(S)) = \left\{ (\sigma_{u^{-1}(S)}) \in \prod G(u^{-1}(S)) \middle| \begin{array}{l} \text{for any strongly separable} \\ \text{extensions } S_1 \text{ and } S_2 \text{ such} \\ \text{that } S_1 \subset S_2, \ \sigma_{u^{-1}(S_2)} \mid u^{-1}(S_1) \\ \text{(restriction map)} = \sigma_{u^{-1}(S_1)}. \end{array} \right\}$$

For any $\sigma \in G_{\mathfrak{p}}$, obviously $(\sigma | u^{-1}(S)) \in \lim G(u^{-1}(S))$. Conversely for any $(\sigma_{u^{-1}(S)}) \in \lim G(u^{-1}(S))$, we show the map $\sigma: \Omega \to \Omega \quad (\omega \to \sigma_{u^{-1}(S)}(\omega)) \ (\omega_x \in S)$

belongs to $G_{\mathfrak{p}}$. Let $\omega_x \in S_1$ and $\omega_x \in S_2$ for strongly separable extensions S_1 and S_2 . Then there exists a strongly separable extension S such that $S_1 \subset S$ and $S_2 \subset S$, and $\sigma_{u^{-1}(S_1)}(\omega) = \sigma_{u^{-1}(S_1)}(\omega) = \sigma_{u^{-1}(S_2)}(\omega)$. Hence σ is independent of the choice of S. Since each $\sigma_{u^{-1}(S)}$ is a monomorphism, σ is a monomorphism. Let (α_S) be the element of G(x) such that each α_s is induced by $\sigma_{u^{-1}(s)}$. For any $\omega' \in \mathcal{Q}$, there exists $\omega \in \Omega$ such that $((\alpha_s)(\omega_x) = \omega_x'$. We choose a strongly separable extension S which satisfies $\omega_x \in S$. Then $\sigma_{u^{-1}(S)}(\omega)_x = \alpha_S(\omega_x) = \omega_x'$; that is $\omega' - \sigma_{u^{-1}(S)}(\omega)$ $\in I_{\mathcal{Q}}(x)$. Hence there exists $t \in I_{\mathcal{Q}}(x)$ such that $\omega' - \sigma_{u^{-1}(S)}(\omega) = \sigma_{u^{-1}(S)}(t)$; that is $\omega' = \sigma_{u^{-1}(S)}(\omega + t)$, and σ is an epimorphism. For any idempotent $e \in \mathfrak{p}$, $e_x = 0$. Hence for any strongly separable extension S, $\sigma(e)_x = \sigma_{u^{-1}(S)}(e)_x = \alpha_S(e_x) = 0$ and $\sigma_{u^{-1}(S)}(e) \in I_{\mathcal{Q}}(x) \subset \mathfrak{p}$. Consequently $\sigma \in G_{\mathfrak{p}}$, and

$$\xi \colon G_{\mathfrak{p}} \to \underline{\lim} G(u^{-1}(S)) \quad (\sigma \to (\sigma|u^{-1}(S)))$$

and

$$\eta: \varprojlim G(u^{-1}(S)) \to G_{\mathfrak{p}} \quad (\!\!(\sigma_{u^{-1}(S)}) \to (\omega \to \sigma_{u^{-1}(S)}(\omega))\!\!)$$
 are inverse bijections each other.

 $G(x) = \lim_{n \to \infty} G(S)$ (resp. $G_{\nu} = \lim_{n \to \infty} G(u^{-1}(S))$) is a topological space under the

standard topology (cf. [3] p. 58); that is, G(x) (resp. G_{ν}) has the inverse limit topology induced from the discreate toplogy on each G(S) (resp. $G(u^{-1}(S))$). On the other hand, G(x) (resp. G) has the finite topology. The element of the subbasis for the neighborhoods of α (resp. σ) takes the form of $\{\beta \in G(x) | \alpha(\omega_x) = \beta(\omega_x)\}$ (resp. $\{\tau \in G | \sigma(\omega) = \tau(\omega)\}$) ([2] p. 29).

Lemma 6. G(x) (resp. G) is a topological group under the finite topology.

Proof. G(x) (resp. G(x)) is a subgroup of the automorphism group G(x)0 of G(x)2 or G(x)3 as an Abelian group. Since G(x)4 is a topological group under the finite topology ([2] p. 30), G(x)3 (resp. G(x)4 is a topological group under the finite topology.

Proposition 7. In G(x), the finite topology is equivalent to the standard topology. Proof. The fundamental neighborhood system of $\alpha = (\alpha_s)$ in G(x) under the standard topology takes the form of

$$U = (\alpha_{S_1} \times \cdots \times \alpha_{S_n} \times \prod_{S \neq S_1, S_2, \cdots, S_n} G(S)) \cap G(x).$$

Let $\{s_{ij}|j=1,2,\dots,m_i\}$ be the set of generators of the strongly separable extension S_i $(i=1,2,\dots,n)$ as an R(x)-module. Then we have

$$U = \bigcap_{\substack{S_{ij} \in S_i \\ i=1,2,\dots,n \\ j=1,2,\dots,m_i}} \{\beta \in G(x) | \beta(s_{ij}) = \alpha(s_{ij}) \}.$$

Hence the finite topology is stronger than the standard topology. Conversely, let $V = \{\beta \in G(x) | \beta(s) = \alpha(s)\}$ be any element of the subbasis of neighborhood of α and $s \in S_1$ for some strongly separable extension.

For any $\beta \in V$

$$V = \{ \beta \in G(x) | \beta(s) = \alpha(s) \} \supset (\beta_{s_1} \times \prod_{S \neq s_1} G(S)) \cap G(x) \ni \beta$$

Hence V is an open set in G(x) under the standard topology and the standard topology is stronger than the finite topology.

Corollary 8. (cf. [1] p.107) G(x) is a topological group under the standard topology.

Proposition 9. $G_{\mathfrak{p}}$ is a closed topological subgroup of G under the finite topology. Proof. We will show that $G_{\mathfrak{p}}^{c}$ (complement in G) is open. Assume that $\sigma \in G_{\mathfrak{p}}^{c}$. Then there exists an idempotent $e \in \mathfrak{p}$ such that $\sigma(e) \in \mathfrak{p}. \{\tau \in G | \tau(e) = \sigma(e)\}$ is an open set in G which contains σ , and we have $\{\tau \in G | \tau(e) = \sigma(e)\} \cap G_{\mathfrak{p}} = \emptyset$. Thus $G_{\mathfrak{p}}$ is closed in G.

Proposition 10. In G_{ν} , the standard topology is stronger than the finite topology. Proof. Using Theorem 5(1) and (4), we can prove in a similar manner to the second

10 Ryo Saito

part of Proposition 7.

Proposition 11. G_p is a topological group under the standard topology.

Proof. We will show that the maps $G_{\mathfrak{p}} \times G_{\mathfrak{p}} \to G_{\mathfrak{p}}((\sigma, \tau) \to \sigma \tau)$ and $G_{\mathfrak{p}} \to G_{\mathfrak{p}}(\sigma \to \sigma^{-1})$ are continuous. For any element of the subbasis of the neighborhoods $(\sigma \tau | u^{-1}(S_1) \times \prod_{s \neq s_1} G(u^{-1}(S))) \cap G_{\mathfrak{p}}$ of $\sigma \tau$, we take the neighborhood

$$(\tau|u^{-1}(S_1)\times\prod_{S\neq S_1}G(u^{-1}(S)))\cap G_{\mathfrak{p}}$$
 of τ and the neighborhood

$$(\sigma|u^{-1}(S_2)\times\prod_{S\neq S_2}G(u^{-1}(S)))\cap G_{\mathfrak{p}}$$
 of σ .

Here $S_2 = \bar{\tau}(S_1)$.

Since $\tau(u^{-1}(S_1)) \subset u^{-1}(\bar{\tau}(S_1)) = u^{-1}(S_2)$, we have

$$((\sigma|u^{-1}(S_2)\times \prod_{S\neq S_2}G(u^{-1}(S)))\cap G_{\mathfrak{p}})((\tau|u^{-1}(S_1)\times \prod_{S\neq S_1}G(u^{-1}(S)))\cap G_{\mathfrak{p}})$$

$$\subset (\sigma\tau|u^{-1}(S_1)\times \prod_{S\neq S_1}G(u^{-1}(S)))\cap G_{\mathfrak{p}}$$

Hence the map $G_{\nu} \times G_{\nu} \to G_{\nu}((\sigma, \tau) \to \sigma \tau)$ is continuous. For any element of the subbasis of the neighborhoods $(\sigma^{-1}|u^{-1}(S_1) \times \prod_{S \neq S_1} G(u^{-1}(S))) \cap G_{\nu}$ of σ^{-1} , let $\overline{\sigma^{-1}}(S_1)$

$$=S_2$$
. Since $\sigma^{-1}(u^{-1}(S_1))\subset u^{-1}(\overline{\sigma^{-1}}(S_1))=u^{-1}(S_2)$, we have

$$\left[\left(\sigma | u^{-1}(S_2) \times \prod_{S \neq S_2} G(u^{-1}(S)) \right) \cap G_{\mathfrak{p}} \right]^{-1} \subset \left(\sigma^{-1} | u^{-1}(S_1) \times \prod_{S \neq S_1} G(u^{-1}(S)) \right) \cap G_{\mathfrak{p}}$$

Hence the map $G_{\mathfrak{p}} \to G_{\mathfrak{p}} (\sigma \to \sigma^{-1})$ is continuous.

From the above considerations, we have the following Theorem.

Theorem 12. Let $G_{\mathfrak{p}}[s]$ and $G_{\mathfrak{p}}[f]$ be topological groups under the standard topology and the finite topology respectively. Then the following arrows are continuous.

$$G_{\mathfrak{p}}[s] \xrightarrow{1_{G_{\mathfrak{p}}}} G_{\mathfrak{p}}[f] \xrightarrow{-} G(x)$$

Proof. $1_{G_{\mathfrak{p}}}$ is continuous by Proposition 10. For any element of the subbasis of the neighborhoods $V = \{\alpha \in G(x) | \alpha(\omega_x) = \bar{\sigma}(\omega_x)\}$ of $\bar{\sigma}$, $U = \{\tau \in G_{\mathfrak{p}} | \tau(\omega) = \sigma(\omega)\}$ is a neighborhood of σ . And for any $\tau \in U$, we have $\bar{\tau} \in V$. Hence — is continuous.

Corollary 13. If $G(u^{-1}(S))$ is a finite set for each S, \overline{G}_{v} is a closed subgroup of G(x).

Proof. By the assumption $G(u^{-1}(S))$ is compact and hence $G_{\mathfrak{p}} = \varprojlim G(u^{-1}(S))$ is compact. Hence $\overline{G}_{\mathfrak{p}}$ is compact and closed G(x) (cf. [1] p. 107).

Proposition 14. If $I_{\mathcal{Q}}(x)$ is a direct summand of \mathcal{Q} , every R(x)-algebra monomorphism σ from $u^{-1}(S)$ to \mathcal{Q} which fixes the elements of $I_{\mathcal{Q}}(x)$ is extended to an auto-

morphism of Ω .

Proof. By the assumption that $\mathcal{Q}=I_{\mathcal{Q}}(x)\oplus L$ (as \mathcal{Q} -module), we have $u^{-1}(S)=I_{\mathcal{Q}}(x)\oplus (L\cap u^{-1}(S))$ (as $u^{-1}(S)$ -module) and $S\cong u^{-1}(S)/I_{\mathcal{Q}}(x)\cong L\cap u^{-1}(S)$ (as R(x)-algebra). Let 1=e+f ($e\in I_{\mathcal{Q}}(x), f\in L\cap u^{-1}(S)$). Since $e+f=1=\sigma(1)=\sigma(e)+\sigma(f)=e+\sigma(f), \ \sigma(f)=f$. For any $k\in L\cap u^{-1}(S)$, since k=kf, $\sigma(k)=\sigma(k)\sigma(f)=\sigma(k)f\in L$. Hence $\sigma(L\cap u^{-1}(S))\subset L$. The R(x)-algebra homomorphism $\bar{\sigma}$ from S to \mathcal{Q}_x which is induced by σ is extended to an automorphism $\tilde{\sigma}$ of \mathcal{Q}_x ([1] p. 106).

Let $\sigma^* = p^{-1} \circ q^{-1} \circ \tilde{\sigma} \circ q \circ p$. Then the map $\Omega \to \Omega (a+b \to a+\sigma^*(b)) (a \in I_{\Omega}(x), b \in L)$ is an R-algebra automorphism and is an extention of σ .

Proposition 15. Let \mathcal{Q} be a separable closure of R and h be an R-algebra endomorphism of \mathcal{Q} such that for some $x \in X(\mathcal{Q})$, $h(I_{\mathcal{Q}}(x)) = I_{\mathcal{Q}}(x)$. Then h is an automorphism.

Proof. The induced R(x)-algebra endomorphism \bar{h} of Ω_x is an automorphism ([1] p. 106). For any $\omega' \in \Omega$, there exists $\omega \in \Omega$ such that $h(\omega)_x = \bar{h}(\omega_x) = \omega'_x$. Hence $\omega' - h(\omega) \in I_{\Omega}(x)$. By the assumption, there exists $t \in I_{\Omega}(x)$ such that $\omega' - h(\omega) = h(t)$. Hence $h(\omega + t) = \omega'$; that is, h is an epimorphism. By § 2 (6), h is a monomorphism (Ω is minimal). Consequently h is an automorphism.

References

- F. DeMeyer and E. Ingraham: Separable algebras over commutative rings. Lecture notes in Math. 181 Sringer (1971)
- [2] N. Jacobson: Structure of ring. Amer. Math. Soc. Coll. Publications 37 (1956)
- [3] A. R. Magid: The separable Galois theory of commutative rings. Pure and appl. Math. A series of monographs and textbooks 27. Dekker (1974)