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Introduction

Throughout this note, we assume that every ring has an identity element
1, every module is unitary, and a subring of a ring contains the same 1. A
ring homomorphism will mean one taking 1 to 1. For a ring A, 4M (resp.
M) denotes the left {resp. right) A-module M and rad A denotes the prime
radical (the intersection of all prime ideals) of A, and A is said to be a semi-
prime ring if rad A=0. As well known, A is semiprime if and only if A
has no non-zero nilpotent ideals, and when A is commutative, A is semiprime
if and only if A has no non-zero nilpotent elements ([5]).

Let R be a commutative ring and A be an R-algebra. A is said to be
a separable algebra if 45, 4.A is a projective module where A° is the R-
algebra opposite to A ([2], p. 40). Especially, when R is a field, A is sepa-
rable if and only if the dimension of A as a vector space over R is finite
and for any field extension L/R, rad (AQ=rL)=0 ([2], Th. 2.5, p. 50).

On the other hand, the notion of a separable extension field over a field
(not necessarily algebraic) has been defined in [4] (p. 166). That is, when
L/K is a field extension and £ is an algebraic closure of L, L is said to be
separable over K if it is either of characteristic 0 or if it is of characteristic
p>0 and L is lineary disjoint to K”~' over K where K’ ={we|w?=K}.
Moreover, we can see that L is separable over K if and only if for any
field extension E/K, rad(LQxE)=0 ([4], Th. 21, p. 197 and Th. 23, p.
202).

In [3], [5]), [7] and [8], the conditions which insure that a group ring,
a twisted group ring, a skew group ring and a crossed product are itself
semiprime were studied.

Considering these backgrounds, the purpose of this note is to investigate
an algebra A over a commutative ring R which satisfies the following condi-
tion (*).

(*) For any R-algebra B such that B is a semiprime ring, BX)rA is
also a semiprime ring.

*OBERERL BEMRES, "k K
Laboratory of Mathematics, The Junior College of Dairying, Ebetsu, Hokkaido 069-
(1, Japan




392 Ryo SAITO

§1. An R-algebra satisfying the condition (*)

Lemma 1. Let A/B be a ring extension. Then we have
BNrad ACrad B.

PrROOF. Since rad A (resp. rad B) is the set of all strongly nilpotent
elements of A (resp. B) ([5], Prop. 1, p. 56), this is clear.

Lemma 2. (cf. [5], Proof of Lemma 7, p. 164) Let A and B be R-
algebras such that the map B—AXzrB (b—1K0) is a monomorphism. Then,
regarding B as a subring of A®=rB, we have

BNrad(ARQgB) =rad B.

Hence if AQzB is semiprime, then so is B.
Proof. By Lemma 1, BNrad (ARrB)Crad B. Let P be a prime ideal
of ARrB and xByc PN B for z, y&B. Then for any Y aRb,e AQrB,

we have
(Y aQbly = ZaRxby
= Y (a:®1) 1Qxby) P .

So z€PN B or yePN B, that is, PN B is a prime ideal of B. Hence we
have

rad BC N(PN B)
= BN rad(ARzB).

Proposition 3.

(1) If an R-algebra A satisfies the condition (¥), then for any commuta
tive R-algebra S, S®rA satisfies the condition (*) as an S-algebra.

(2) If a commutative R-algebra S and an S-algebra A satisfy the
condition (*), then A satisfies the condition (*) as an R-algebra.

(3) Let.S and S, be commutative R-algebras. 1f an S,-algebra A, and
an S;-algebra A, satisfy the condition (*), then A,XrA: satisfies the condition
(*) as an SX)rS:-algebra.

(4) Let S be a commutative R-algebra, and S, be a commutative
R-algebra which satisfies the condition (*). Let A, be an S;-algebra and A,
be an S;-algebra such that A,XrA, satisfies the condition (*) as an S;X)»S%:-
algebra. Then, if A, is faithful as an R-module and contains R as an R-
direct summand, A, satisfies the condition (*) as an S, -algebra. Especially
if A, and A, are R-algebras such that A, is faithful as an R-module, A,
contains R as an R-direct summand and A,XrA, satisfies the condition
(*) as an R-algebra, then A, satisfies the condition (*).

(5) Let A and I' be R-algebras and A=/ADI (a direct sum of rings).
Then A satisfies the condition (¥) as an R-algebra if and only if 4 and [’
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satisfy the condition (*).

(6) Let A, be an R -algenra and A, be an R,-algebra. If we put
A=APA;, and R=R@PR, (direct sums of rings), we can regard A as an
R-algebra under the multiplication (r, r) (ay, @) =(na;, rna;) where r &R,
nER, o, A, and a,& A,. Then A satisfies the condition (*) as an R-algebra
if and only if R,-algebra A, and R,-algebra A, satisfy the condition (*).

Proof. (1) and (2) are clear.

(3) By (1), Ai®rS: (= AiRs,SXrS:) and SiXrAs (= S5Q)pSX)s, As) sat-
isfy the condition (*) as S§;X)rS;-algebras, and hence A,®rA; (= A&s, (S
%) Xs,0,s, (10 rS)X)s,As) satisfies also the condition (*).

(4) Let B be any S-algebra which is a semiprime ring. By the as-
sumptions, BX»S: (= BXs,SiX®)rS:) is semiprime, and hence BX)s AiXrA:
(= BRs, (Si1X0r8)Xs,e,s, (A1QrAy) is also semiprime. Since R is R-direct
summand of A,, the map BXsAAi—BXs AiRrA: (bQa—bRa,®1) is a
monomorphism, and by Lemma 2, BX)s A, is a semiprime ring.

(5) Let B be any R-algebra. Then since BX)rA=(BX)zAP(BRrl),
we have rad (BX)rA) =rad (BRrA)Prad (BRrI') and this induces the con-
clusion.

(6) In this case, R, and R, satisfy the condition (¥) as R-algebras. Let
A satisfy the condition (*) as an R-algebra and let B be an R,-algebra which
is a semiprime ring. Then B can be regarded as an R-algebra under the
multiplication (ry, nn)b=nb where nER,, nER, and b= B. Since BRrA=
B&XrA =BXgr A, BRr A is also a semiprime ring. Hence A, satisfies the
condition (*) as an R,-algebra and for R,-algebra A;, we can take the same
manner. The converse follows from (2) and (5).

Proposition 4. Let A be a central separable R-algebra. Then R is
semiprime if and only if A is semiprime.

Proof. Let R be a semiprime ring and Ul be any nilpotent ideal of A.
I U"=0, UNR™=0 and hence UNR=0. Therefore U=UNRA=0.
Conversely, let A be a semiprime ring and 2 be any nilpotent ideal of R.
if An=0, (AA)"=A"A=0. Hence AA=0 and A=0. (cf. [2], Cor. 3.7, p. 54)

A bimodule M is said to be a Morita module if ,M and My are
finitely generated projective, and A=FEnd My and B=End ,M.

Lemma 5. Let My be a Morita module. Then A is semiprime if and
only if B is semiprime.

Proof. It is well known that there exists a one-one correspondence
between the set of ideals of A and the set of ideals of B given by the
correspondence U->B={b=B| MbCUM} where 11 is an ideal of A. Hence
if B is semiprime and 11 is a nilpotent ideal of A such that U*=0, M¥B"C
UMPB'cU"M=0. Therefore B"=0, so B=0 and U={ac= A | aMC MB
—0} =0.
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Proposition 6. The notion of an R-algebra satisfying the condition (¥)
is Morita invariant.

Proof. Let A and B be R-algebras and ,Mjp be a Morita module such
that A satisfies the condition (*). Then for any R-algebra A, .g,MXzrA
is finitely generated projective and

HOmB®RA(M®RA7 M®RA)
;HOITIB(M M)®RA
— ARz

Hence 4g,/M&rAsg,: is a Morita module. So, if A is semiprime, Az
is also semiprime and by Lemma 5, BX)rA is semiprime.

Proposition 7. Any central separable algebra satisfies the condition (¥).

Proof. Let A be a central separable R-algebra. Then A° is also a
central separable R-algebra and therefore 4.g,4A°r is a Morita module ([2],
Th. 3.4, p. 52). Hence for any R-algebra B, 18,43, A°XrBp is a Morita
module, and if B is semiprime, by Lemma 5, A°®zAXrB is semiprime.
Since R is an R-direct summand of A° ([2], Lemma 3.1, p. 51), by Lemma
2, AR)zB is a semiprime ring.

We can find something in common between the following proposition
and the definition of the separability in [4] (p. 166).

Proposition 8. Let R be a commutative ring of prime characteristic p
and S be a commutative R-algebra satisfying the condition (*). Moreover,
let 2/R be a commutative ring extension such that 2 1s an Sdlgebra and
a semiprime ring. For any mteger i=0, we put R”™ ={0ER | 0’ ER).
Then S is linearly disjoint to R”™" over R.

Proof. Since £ is commutatwe and semiprime, R"™" is semiprime.
Hence, by the assumption, SQrR? " is also semiprime. We consider the map

7 SQ=R”—SR”(Ls®w,~ Lsj0,),
and let 2s;Qw;EKer = where each SJES and each wJERp . Since p is
prime, we have (35;& ;)7 = 2] (s/®w, =35 Qo Zs/" w? ®1=
(Xsjwy)? '®1=0. Since S®rR""" is semiprime, Zsj®w]—0 and 7 is a

monomorphism. That is, .S is linearly disjoint to R”™" over R.

Corollary 9. Under the same assumptions as in Theorem 8, we put
R’J_w:'UOR'H. Then .S is linearly disjoint to R”™" over R.

Prz)of. In the proof of Proposition 8, we can replace p¢ by p* where £
is the largest integer 7 such that w]-piER.

Remark. Let 7 be the map R”"'®zR" =R (Y w;Qw;— Y ;e and
7" be the map R ®RR” "SR (Y w,Qe— Y 0;0,). Then we have Ker
7 Crad(R”"QzR?™") and Ker " Crad(R* "®zR”™") by the similar manner
to the proof of Proposition 8 and Corollary 9.
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§ 2. Examples

Any central separable algebra satisfies the condition (*) (Proposition 7).
Moreover let R be a commutative ring and G be a finite group. If the
order |G| is a unit in R, then the group ring RG is a separable R-algebra
(2], p. 41) and for any R-algebra B, since BX)zRG=BG, we can see that
RG satisfies the condition (*¥) as an R-algebra (cf. [5], Prop. 8, p. 162). But
the separable algebras do not always satisfy the condition (*). For example,
Z/(4) is a separable Z-algebra (cf. [2], Prop. 1.11, p. 46) but since Z/(4) is
not semiprime, Z/(4) does not satisfy the condition (¥) as a Z-algebra where
7 is the ring of integers. At the same time, this gives an example which
insures the fact that the homomorphic image of an algebra satisfying the
condition (*) does not always satisfy the condition (¥).

In this section, we will give other examples satisfying the condition (¥).
Lemma 7 of [5] (p. 164) and its proof are our guides.

Let A be a ring, G be a finite group of automorphisms of A and B=
AS={xcA|o(x)=z for all 6&G}. Then a ring extension A/B is said to
be a G-Galois extension if there exist i, - -, Tn; ¥, -*»Yn in A such that
ilxia (y))=4,,, where 8,, means Kronecker’s delta. In this case, the set {(xs, ¥2)

| i=1,---,n) is called a G-Galois coordinate system for A/B ([6], p. 116).
Lemma 10. Let A/B be a G-Galois extension such that A=z B+ -+
z.B(xiEA, k=1, ---,n). Then there exist ¥, -+, ¥, in A such that {(z, ¥ |
k=1, .--,n} is a G-Galois coordinate system for A/B.
Proof. Let {(a;,a)|i=1,---,m} be a G-Galois coordinate system for

A/B. We put a;=3 zebg (i=1, -, m) and ye=>3. bua] (k=1, -, n). Then
k=1 i1

for any ¢=G, we have
:/_,:1 k0 (Yi) = ILZI X '21 brio(ai)

= (3 2y o(a)

i=1 k=1

m ,
= 2, aio(ai)
i-=

1

=0, .

Lemma 11. (cf. [9], Th. 9.10, p. 64) Let A/B be a G-Galois extension
such that G={a,=1, &, ---,0,}. Then, if there exists a= A such that {a, (a),
<+, a0, (@)} is a free B-basis of Ay (that is, a is a right G-normal basis element
of A/B), then the matrix (g;(0,(a)) is regular in the matrix ring (A),.

Proof. By Lemma 10, there exist ¥, -+, %, in A such that {(s; (a), ¥s) |

k=1, ---,n} is a G-Galois coordinate system for A/B. That is, iak(a) 65 (Yx)
k=1
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=d,;. Since 121 Oy (a)ai_l(o-j(yk»:alai—luj:(;ij’ we have kZIUi (0r (a)) ”j(?/k):5w'>
and so

(a(o@) ) (o5 00) = (2 1 () 0
=01y
On the other hand, we can define a B-homomorphism f;: Az—Bgy(x—
3 o (ea) and since 33 0:(a) /i (@)= 5 0:(@) 5 a0 (i) = 33 (3] o1 (@ (03) o ()

:ilﬁlkok (x)=¢, (x)=x, a pair of sets {a,(a), -, 0,(a)} and {fi, -, fu} Is a
k=
dual basis of Az Therefore

("j (?Jz)) <Gi (aj (a)>> =

Propositon 12. Let A/R be a G-Galois extension such that R is con-
tained in the center of A. If A has a normal basis over R, then for any
R-algebra B, B is semiprime if and only if AXRrB is semiprime.

Proof. Since R is an R-direct summand of A (cf. [2], p. 85), the map
B—> AR B (b—1®b) is a monomorphism. Hence by Lemma 2, if AXzB
is semiprime, then B is semiprime. Conversely, let B be semiprime, G=
{o,=1, -+, 0,} and {o(a), -+, 6, (a)} be a normal basis of A. By Lemma 10,
there exist ¥, -, ¥, in A such that {(g;(a), y)|i=1,---,n} is a G-Galois
coordinate system for A/R. By the automorphism 6,Q1: AXrB—AX:DB

(xXR)b— 0, (2)Rb), rad (AR rB) is sent onto itself. Hence for any i g;,(a)X)b;=
j 1
rad (AQgB), by Lemma 11, we have

Hence by Lemma 2, for any {(i=1,--+,n), we have b BNrad (AR rB)=
rad B=0. Therefore rad (AXzB)=0
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Proposition 13. (cf. [5], Lemma 7, p. 164) Let S be a commutative
separable extension of a semilocal ring R (that is, R contains only finitely
many maximal ideals), and we assume that .S has no idempotents exept 0 and
1 and .S is a finitely generated projective R-module. Then for any R-algebra
B, B is semiprime if and only if S&)rB is semiprime.

Proof. Since R is an R-direct summand of S ([2], Cor. 2. 3, p. 94), the
map B—SXzB(b—1X)b) is a monomorphism. Hence by Lemma 2, if SQzB
is semiprime, then B is also semiprime. Conversely, let B be semiprime.
By Theorem 2.9 in [2] (p. 98), S can be embedded in a commutative G-
Galois extension N of R which has a normal basis ([1], Th. 4.2, p. 27),
where G is the group of all automorphisms of N which leave R elementwise
fixed. Since N and S are separable extensions of R which are finitely
generated projective R-modules, by Theorem 2.4 in [2] (p. 94), N is a sepa-
rable extension of .S which is a finitely generated projective S-module. So,

S is an S-direct summand of N and the map SR rB—>NXsSRzB—NXrB
(sQb—1XsXb—sX)b) is a monomorphism. By Proposition 12, since NX)zB
is semiprime, by Lemma 2, SX)zB is also semiprime.

Proposition 14. Let A be an R-algebra satisfying the condition (*) and
A [x] be the ring of polynomials in one variable. Then A [x] satisfies the
condition (*) as an R-algebra.

Proof. For any R-algebra B, we have BX)rA [2]=(BXrA)[x]. Hence
when B is semiprime, we have rad (BX)rA [z])=rad (BRrA) [z])=(rad (B
X rA) [x] =0 ([5], p. 59).

Corollary 15. Let A be an R-algebra satisfying the condition (*) and
Alx, -, z,] be the ring of polynomials in »n variables. Then A [z, -+, z.]
satisfies the condition (*) as an R-algebra, and especially R [z, -+, 2,] satisfies
the condition (*).
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