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Let R be a commutative ring. In [3], we consider an R-algebra A
which satisfies the following condition.

(*) For any R-algebra B such that B is a semiprime ring, BR)rA is
also a semiprime ring.

Proposition. Let A be an R-algebra which is finitely generated as an
R-module and satisfies the condition (¥). Then A is a separable R-algebra.

Proof. For any maximal ideal m of R, AQrR/m is a semiprime ring
and a finite dimensional R/m-algebra which satisfies the condition (*). For
any extension field L of R/m, since AQrR/ME)z L is isomorphic to AR L
and rad (ARrL)=0, ARgrR/m is a separable R/m-algebra. Hence A is a
separable R-algebra ({1], p. 72, Th. 7.1).

A is said to be an H-separable R-algebra if A is a separable C-algebra
and the map CRC—C (xQy—=xy) is an isomorphism where C is the center
of A ([4], p. 265, Prop. 1.1). A central separable algebra is an H-separable
algebra and satisfies the condition (*) ([3], p. 394, Prop. 7). But regarding
the relation between an H-separable algebra and an algebra which satisfies
the condition (*), we can see that an H-separable algebra does not necessarily
satisfy the condition (*) and an algebra which satisfies the condition (*) is
not necessarily H-separable.

Examples.

(1) Let Z be the ring of rational integers. Z/(n*) (n>0, £=2) is not
semiprime and this is an H-separable Z-algebra.

(2) Let L be a separable extension field of a field K such that [L: K] <
co. Then K-algebra L satisfies the condition (*) ([2], p. 164, Lemma 7).
But since the map LQxL—L (xQy—xy) is not isomorphic, L is not H-
separabie.
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