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0. Introduction and Summary

Euler’s well known algorithm is simple and explicit ; however, it is notoriously
unstable and imprecise. On the other hand, the Crank-Nicolson algorithm®? is, in
general, stable and precise. The latter algorithm, however, is implicit and thus
slow. Although advances in hardware development enable the use of implicit and
slow algorithm, the intuitive relation between the problem and the algorithm is
lost in the implicit algorithm. Consequently in computer education, the introduction
of the algorithm into simulation studies becomes difficult on the elementary level.

In this paper, we apply a simple and direct algorithm accurate enough to solve
the Cauchy problem of the Schroedinger equation. The algorithm is essentially
the same one as that introduced by Cromer®, who used it for solving some simple
examples and pointed out its relative stability. However, the detailed step by step
examination of stability, in general, and the analysis of unitarity crucial for the
Schroedinger equation, in particular, were not performed.

In section 1, we introduce the direct method, as well as the other widely used
one. The stability and (almost-) unitarity are discussed in section 2; an example
of initial data is shown in section 3. For the sake of comparison, Crank-Nicolson’s
algorithm is applied to the Schroedinger equation in the Appendix.

1. Algorithm

The partial differential equation to be solved in this paper is that of the
Schroedinger equation :

hZ aZ

., 0

i —Hy, H=—, 7 +Wa, (L. 1)
Using characteristic dimensional constants, we do the following rescaling :

mc? mc 2

5t T and poo W(x)-»W(z). (1. 2)

In other words, the length, the time, the momentum and the energy are measured
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) . h 2h mc? . .
in the units, e mc®? MO and 5 respectively. Then we get the equation

written in terms of dimensionless variables :
2
i —Hp., H=-T 1W. (1.3)

It has to be noted that the constant, ¢, with the dimension of velocity was intro-
duced by hand in the above rescaling; it does not necessarily have the meaning
of the light velocity unless the potential energy W contains the electromagnetic
interaction.

After separating real- and imaginary-parts of the wave function,

Ot ) = ult, x)+iv(t, x), (1. 4)
we discretize the partial differential equation :
u(nk, jh) =u?, v{nk, jh) = v (1. 5)

(n and j are integers).

The simplest algorithm is Euler’s forward iteration :
Wit = ut— p(vi+ v —200) +EW v, (1.6a)
vitt = ol (et et —2u) — W, (1.6b)

k . . .. . .
where pt=-;,. As is well known, this explicit algorithm is very unstable because
F=}

it is a non-unitary approximation to the unitary temporal evolution :

ot, x) = e (0, x) . (1.7
Goldberg, Schey and Schwartz®* used the Cayley form
ik
¢(t+k: SC) = ¥77k7¢(t’ ‘r) ’ (l 8)
1+ o H

as a wnitary approximation to (1.7). Actually, this gives the Crank-Nicolson algo-
rithm"® :

w5 £ ontit vt — 205ty — "IL)C'WJ'U'}H
:u;_%(v;&+l+v;_l—2v';)+ %ij';, (1.9a)
vt — N2 (u’,’i}-{—u"“ Zu’}“)—{- k Wi+t
vt G gt g~ 2 — 5 W, (1.9b)
which is unitary (see Appendix) but implicit.

An explicit, relatively stable, and direct algorithm can be given by the Euler-
Cromer algorithm? :



Euler-Cromer Algorithm Applied to the Schroedinger Equation 57

Wy = = {0+ v~ 209 +AW 0], (L 10a)
vttt = vl p(u it — 20 ) — RWut (1.10b)
The following program fragment written in C shows the straightforwardness of
the algorithm (we set W=0 for the sake of simplicity) :
for (=0; j<N; j++) {
uljl = uljl—mux[(j+1) % N]+o[(N+j—-1)ZN]l—v[j];
}
for (j=0; j<N; j++) {
v[jl = v[jl+mux(ul(j+1) %N +ul(N+j—1DZ%N]—uljD;
}

It is easily seen that the results obtained in the first FOR-LOOP (so-called “left-
values”) are already assigned to the right hand side of the statement in the second
FOR-LOOP so that the coding automatically realizes the Euler-Cromer algorithm.

2. Stability and Almost-Unitarity of the Euler-Cromer Algorithm

In this section, we analyse the stability of the Euler-Cromer algorithm when
used for solving the Schrodinger equation. The explicit iteration formula given by
eq. (1. 10) can be written in a matrix form:

1 0][u7+1]:[1 —yd][u'}]’ 2.1)
—pd 1ot 0 1 o

where 4 is the discrete Laplace operator defined by

AEj:$j+l+5j—l—2€j-

cos (pjh) and sin (pjh) are the eigenfunctions of the Laplace operator:

4 cos (pjh) = —4 sin? (l;E) cos (pjh), (2.2a)

4 sin (pjh) = —4 sin? (1)2@> sin (pjh) . (2. 2b)

Using these eigenfuctions, we write the wave function in the Fourier series form :

[ u’}] _ [COS (pjh) —sin (Pjh)] [En(P)]

2.3
sin (pjh)  cos (pih) | | 7.(p) %2

n
Uj

Then we have

1 } O][cos(pjh) —sin(pjh)][$n+1(l>>]
| 4 sin? (1’21> 1] {sin(pin)  cos(pih) | L nen(p)

_ [ 1 4yt sin? (Pz—h> ] [ cos (pjh) —sin(pjh) ] [&;(P) ]
1o 1 sin (pjh) cos (pjh) '
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That is,

[ cos (pjh) —sin (pjh) ] [fn-l(i’) ]
sin (pjh)  cos(pjh) | | o (P)

:[ 1 & ] [cos (pjh) —sin (Pj/l)] [En(P) (2.4
—kK 1—4%| | sin (pjh) cos (pih) | 1n.(p) |’ -
where & = 4y sin? <P2h ) . (2.5)
The eigenvalues of the time-transfer matrix,
1
T—_—[ ) F 2] , are given by the solution to the equation :
— K —K
2+(2—2)1+1=0. (2.6)
The solutions are
IC2 . K -
,zle—?izfé [4—&?V2, for 0=r=4pu=<2. (2.7)
¥ 5=, =1, (2.8)
h*= 27 o -

the stability condition in iteration is satisfied accordingly.
Note that the time-transfer matrix is unitray only up to O(x?. Indeed, the
matrix can be diagonalized by using a similarity transformation, but not by using

. . T T2 . .
a unitary transformation. Let X:[ " ] be the similarity transformation
Ty Tpe

matrix such that
Ty T |7E 1 K Tn T | i O
[xgl xgg] [—E 1—/:2][121 xgg]_[O 2_]'
Then its matrix elements are given by

m=1, Ty = — g —|—*;T(4—Ic2)“2,

K

= — e+ Z),(4_,fz)1/2 , Zow=1. (2. 10

«
&

. Xy T | . . .
Therefore the matrix X = itself is not unitary.

Ty Xog

. . .. N K
We rewrite the time-transfer matrix in terms of sinf = ;.

&

K

2
From 4. =1— —K{)— ii—2—<4_x2)1/2 — g2t (2.11)
K ] -
and T, =y = — 5 + -2*(4—52)”2 = ze' (2.12)

we obtain the following relation :
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1 2sin @
T= ) )
—2sinf 1—4sin26

/] .0 7 . 0
1 CcOs _2‘ —Sin P cos 20 Sil’l 20 COs E’ Sin ?
cos _sin 0 co 01| —sin20 cos26 ; A A
sin S | sin 5 cos
(2.13)
2 |1/2
where sin § = -g~ , cosf = [1 — %] .
2 /2 2
sin20=fc[1—-%{| s 00520=1—%,

01 e 1 G
s e s]

0 1/2 1 1/2
cosféfz'fl?[l—i—'g] +‘2“|i1—’ ] .

Now, it is an easy task to get the exact expression of the time evolution
matrix aftre the n-th step temporal iteration. Eq. (2.13) allows us to write the
time-transfer matrix as

T =YRY™, where

o]

N}Pﬁ

0 .0 0 .0
cos & —sin | [cosy sing
Y — = < d Y 1=_ "+ N 2.14
.0 A an cosf | . 6 0 ( )
—sin cos sin 5~ €os 5
are the transformation matrix and its inverse, respectively.
cos 20 —sin 26
And R=] . (2. 15)
sin 26 cos 20

is unitarily equivalent to the diagonalized (complex) form of the 7" matrix. In this
form, the result of n steps iteration is given by

Tr—=YRY-!, (2. 16)
cos (2nf) —sin (2710)]

. (2.17)
sin (2n6) cos (2n6)

where R* = [

Note that the discrepancy of X from a unitary matrix does not accumulate
in the course of iteration ; the simple algorithm given above is not only stable but
also a good approximation to the unitary iteration.

1 [ cos [(2n—1) 4] sin (2n6) ]

Tn= L
cos —sin (2n0) cos [(2n+1) 4]

(2.18)
The exact dispersion relation is given by

w(p) = 0= /“: sin~! [Zp sin? ([)2/_1>] . (2.19)
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In the continuum limit (h—0), we get w{p)=p"

3. Gaussian Wave Packet

In this section we give a specific example of the Cauchy data, Gaussian wave
packet :

2

N 2
$0,2) =" % e~ )+ | (3. 1)

1=—N

2nl . L.
where the correspondence, p:“ifv, T=jp7 18 used.

In eq. (3.1) the range of index j is from 0 to N—1, and the average momentum
is given by

p= —‘524"—, (l,=an integer). (3.2)

Note that initial data (3. 1) satisfies the boundary condition :
$(0, 2+ L) = ¢(0, a) .

The above choice corresponds to the following value in eq. (2. 5)

2
£ = 4y sin? <£2}L> = S/Eg\,; sin? (2}76{) ,

2
that is, p = :Zi, Nh=1L.

In the continuum limit A—0, we get the following Fourier transform of the
Gaussian distribution :

ree —(p—D) 2+ 4/; x2 oy .
$(0, x):S e~ P HinE gy — " exp[— *4E;+z[>x], (3. 3)

—00

where p is the average momentum.
The time evolution operator e " acts on ¢(0, x) as follows:

‘/J(t, x) = e—itl{¢(0’ x) = S+°°e_(p_m302 e—ipzﬂ-ip,xdp
T 1/2 — ot 2 o N
- [’Eﬁi‘a’ ] exp [— 'ﬁ}ff;)g)‘ —ipit+ sz] ; (3.4)

where the last line of the above equation is obtained by using an analytic conti-
nuation of the Fourier transform, and v=2p is the group velocity of the wave
packet.

(In our scaling, w(p)=p% v= —0w>

ap
The probability density at time ¢ is given by
i e (x—vt)?6?
l(r/;(l‘, t)fzz[o_—‘_i—:ﬁ] exp[——WT)tz)], (3 6)

which describes the spreading of the distribution.
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Appendix: Crank-Nicolson Method.

The formal solution to the Schroedinger equation and its unitary approxima-
tion are given by

(t+k, x)= e’“‘”gb(t, x) (A. 1)
it
and glt+k 2) = ——¢——¢lL,2), (A.3)

respectively. The action of the Hamiltonian operator upon ¢ is:

(Hg) (¢, z)
= ]2{¢(t 2R+t 2—h)—20(t, 2)}+ W(2)- ¢ (2, 7).
Therefore, from (A.3) we get
Ptk 2)— s {4 b )+ Gl 2 1) = 2000+ by 2))
+i*§ Weg(t, x)
=¢(t, )+ 2",’;{‘ &(t, T4+ ) +¢(t, —h)—24(t, x)}—z Weglt,z) (A 4)

To check the stability and the unitarity, let us solve the above difference equation
in the free case (W=0). Making use of the ansatz, ¢(f, x)~2"¢'?/*, we get

1— zhlz sin (ph)

— : (A.5)
1+ i%’% sin? (%h>

Therefore [2]=1 holds exactly, and we get (as h—0)
2
1—i kp
o ~— — kD" (A. 6)

)2
1+z~[L

O(t, x) = 2" Pt = ¢~ P"teeirz a5 it should be.

On the other hand, an exact dispersion relation for finite # and £ is obtained by
setting z=¢ %.

Since, 2"=¢ P! and t=nk, we get the exact dispersion relation :

0(p) = i tan-! (g) , (A.7)

by the factor of 2)
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Setting T="%p and ¢(nk, jh) = u?+1iv?, we get an implicit equation
n+1 n+1 n+1 n+1 k nt1
w (v - v — 207 )—?Wj‘vj
n n n n k n
=ut—r(via+ v —2v7)+ *Z*ijj ,

‘1)1}+1 (u?i%_'_u‘n-}-l

2y 4 Wy

k
= vl r(wtatuia—2ul) — *ZWju? . (A.9)
The time-transfer matrix obtained from (A. 8) and (A.9)

o 1 1—(x/20 K
T= oy [ ] ’

—£ 1—(x/2)?
is unitary ; indeed it is diagonalized as

1 —1
N2 V2 [ cos @ sin@

[
—1 1 —sinf cos? l
V2 N2

(A. 10)

M\I"‘

—(&/2*
w2 0= 14 (e

That is, § =2tan™! (%) A

We set

were cos f = —+—

. k
s1(j) = wi—r(Viu+via—20)+ 5 W3,

. k
s:(J) = vt +r(uty o —2ul) — ?Wju’} . (A.12)

Then, we have to solve the following coupled equations

z¢0+1—!—r( "+1—2‘Z)6L+1)

o ‘1/07)’”'1 =8 (0) »

vt (e = 2ug ) + I/Voll"Jrl =5(0). (A.13)

Wit (vt ot — 20t — **W vyt =s(j),

vt —r (a4 uj i —

2+ kW =s (). (A. 14)

k
ult b r(viti—2v0F) — E‘WA*U§+1:Sx(NIZ),

i —r(u it — 20+ —‘];‘ Wyultt = s,(Nh) . (A.15)
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Or in a matrix form,

B(0) $(0)+ Ag(1) = 5(0),
Ap(j—D+B() s+ As(+D) =S50,  (G=12-N=-1),

AG(N—1)+ BN) 6(N) = S(N) (A 16)
where
A [ 0 r] Bl)= [ 1 ‘ —2r—(k/2) W(]h)] ’ (A.17)
—r 0 2+ (k/2) W(jh) 1
S(j) = [s‘@ ] and ¢(j) = [”} (A.18
52(J) vt

63

Next we solve equation (A. 16). From B(0) ¢(0)+ A¢(1)=S(0) and A¢(0)+ B(1)

6(1)+ Ad(2)=S5(1), we get

CHg(M)+¢(2=T(1), (A.19)
where C(1)= A"'B(1)—B40) A, (A. 20)
and 7'(1) = A~*S(1)— B~*0) S(0) . (A.21)
In other words, setting C(0)=A"'B(0) and 7(0)=A"15(0), we can write

C(l)=A1B(1)—C*0), (A. 22)

T(1) =A"1S(1)—C-1(0) T(0), (A. 23)
In general, from the ansatz

CH-1o(—-D+6() =TG- (A. 24)
and Ag(j—1)+B() ¢()+As(j+1) =50, (A. 25)
we get

A7B(j) ()= Cj—1) () +o(i+ 1D = ATTSH)-CG-1) T(G-1),
therefore, C(j) = A™'(j—1) ¢(j))—C*(j—1) (A. 26)
and TG =A1Sy)-Cj-1)T(y—-1), (A. 27)
recursively. Lastly, from

CIN-1)dN—-1+¢(N)=T(N-1) (A. 28)
and A¢(N—1)+ B(N) ¢(N)=S(N), (A. 29)

we get
{A'B(N)—CYN—1)} ¢(N) = ALS(N)—CH{N—-1) T(N—1). (A.30)

The remaining task to get a procedure for obtaining ¢(j) is standard; we just

refer to Smith’s classical textbook®.
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