## Note on Quasi-injective Modules

### Ryo SAITO

### (June, 2000)

Let A be a ring with identity 1 and  $_{A}M$  be a (unital) semisimple left A-module. Then the following density theorem is well known.

Let  $D = End(_AM)$  (the endomorphism ring of  $_AM$  operating on the opposite side of the scalar). Then for any  $\phi \in End(M_D)$  and  $m_1, m_2, \dots, m_n \in M$ , there exists  $a \in A$  such that  $\phi(m_i) = am_i$   $(i = 1, 2, \dots, n)$ . In connection with this theorem, we prove the following Proposition.

Proposition. Let  $_{A}T$  be a quasi-injective left A-module,  $M = Soc(_{A}T)$  (the socle of  $_{A}T$ , and assume that  $M \neq 0$ ) and  $D = End(_{A}T)$ . Then

- (1)  $M_D$  is semisimple as a right *D*-module;
- (2) if A is commutative, then for any  $m_1, m_2, \dots, m_n \in M$  and  $\phi \in End(T_D)$ , there exists  $a \in A$  such that  $\phi(m_i) = am_i \ (i=1, 2, \dots, n);$
- (3) if <sub>A</sub>T is an essential extension of <sub>A</sub>M, then for any m<sub>i</sub>, m<sub>2</sub>,..., m<sub>n</sub> ∈ M and φ ∈ End(T<sub>D</sub>) (assume that φ(m<sub>i</sub>) ≠ 0 for some i), there exists u and a in A such that u φ(m<sub>i</sub>) = am<sub>i</sub> (i = 1, 2,..., n) where u φ(m<sub>i</sub>) ≠ 0 for some i.

 ${}_{A}T$  is said to be quasi-injective in case for each monomorphism  $k: {}_{A}X \rightarrow {}_{A}T$  and for each homomorphism  $f: {}_{A}X \rightarrow {}_{A}T$ , there exists  $g: {}_{A}T \rightarrow {}_{A}T$  such that the following diagram is commutative ([1], p. 191).



Proof of Proposition

(1) Let  $D' = End(_AM)$ . Then  $M_{D'}$  is semisimple ([3], p. 125) and since  $_AT$  is quasi-injective, the map  $D \to D'$   $(d \to d | M)$  is surjective. So, any D-submodule of M is also D'-submodule and hence  $M_D$  is semisimple.

(2) In case A is commutative, D is an A-algebra. Hence for any  $\phi \in End(T_D)$ ,  $\phi$  is also an A-homomorphism. So,  $\phi(M) \subset M$ . Moreover, since for any  $m \in M$  and  $d' \in D'$ , there exists  $d \in D$  such that  $\phi(md') = \phi(md) = \phi(m) d = \phi(m) d'$ . Hence  $\phi$  is a D'-homomorphism as well. Therefore by the density theorem, there exists  $a \in A$  such that  $\phi(m_i) = am_i$   $(i = 1, 2, \dots, n)$ .

(3) Let  $m_1, m_2, \dots, m_n \in M$  and  $\phi \in End(T_D)$ , and assume that  $\phi(m_1) \neq 0$ . By the assumption, there exists  $u_1 \in A$  such that  $0 \neq u_1 \phi(m_1) \in M$ . If  $u_1 \phi(m_2) \in M$ , then putting  $u_2 = 1$ , we have  $0 \neq u_2 u_1 \phi(m_1) \in M$  and  $u_2 u_1 \phi(m_2) \in M$ . If  $u_1 \phi(m_2) \notin M$ , then there exists  $u_2 \in A$  such that  $0 \neq u_2 u_1 \phi(m_2) \in M$  and  $u_2 u_1 \phi(m_1) \in M$ . By continuing this process, we can obtain u in A such that  $u \phi(m_i) \in M$  (i = 1, 2,..., n). Since  $M_D$  is semisimple, there exists  $h \in End(M_D)$  such that the following diagram is commutative

環境システム学部経営環境学科、情報数学研究室

Department of Business Environment Studies, Information Mathematics, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan



where  $\Phi(x) = u \phi(x)$  ( $x \in \Sigma m_i D$ ) and *j* is the inclusion map. As *h* is a *D'*-homomorphism, by the density theorem, we have  $h(m_i) = am_i$  and  $u \phi(m_i) = am_i$  ( $i = 1, 2, \dots, n$ ).

Some examples

Here, in connection with the above Proposition, we give some examples which are QF-modules in the sense of [2]. A bimodule  ${}_{A}Q_{B}$  is said to be QF if  ${}_{A}Q$  and  $Q_{B}$  are faithful, and for any simple modules  ${}_{A}X$  and  $Y_{B}$ ,  $Hom({}_{A}X, {}_{A}Q)_{B}$  and  ${}_{A}Hom(Y_{B}, Q_{B})$  are simple or zero.

(1) Let Z be the ring of integers and p be a prime number. We put  $_{z}T = E(_{z}Z/(p))$  (an injective hull of  $_{z}Z/(p)$ ) and  $D = End(_{z}T)$ . Then it holds that  $Soc(_{z}T) = Z/(p) = Soc(T_{D})$ , and for any  $\overline{z} \in Z/(p)$  and  $\phi \in End(T_{D}) \subset End(T_{z}), \phi(\overline{z}) = z_{0}\overline{z}$  where  $\phi(\overline{I}) = \overline{z}_{0} \in Z/(p)$ . In this case, as  $_{z}T$  is divisible,  $_{z}T$  is faithful. Moreover for a prime number p', if p' = p, then  $Hom(_{z}Z/(p'), _{z}T)_{D} = Z/(p)_{D}$  is simple and if  $p' \neq p$ , then  $Hom(_{z}Z/(p'), _{z}T)_{D} = 0$ . For any maximal right ideal  $D_{0}$  of D, if  $_{z}Hom(D/D_{0D}, T_{D})$  is not zero,  $_{z}Hom(D/D_{0D}, T_{D})$  is isomorphic to  $_{z}Z/(p)$ . Hence  $_{z}Hom(D/D_{0D}, T_{D})$  is simple and  $_{z}T_{D}$  is a QF-module.

(2) Let Z be the ring of integers,  $p_1$  and  $p_2$  be distinct prime numbers and Q be the fields of rational numbers. We put  $_{Z}T = E(_{Z}Z/(p_1)) \oplus E(_{Z}Z/(p_2)) \oplus Q$  (external direct sum as Z-modules) and  $D = End(_{Z}T)$ . Although  $_{Z}T$  is not an essential extension of  $Soc(_{Z}T)$ ,  $_{Z}T$  is an injective hull of  $Z/(p_1) \oplus Z/(p_2) \oplus Z$ , and  $Soc(_{Z}T) = Z/(p_1) \oplus Z/(p_2)$ . Let  $\overline{z_1} \in Z/(p_1), \overline{z_2} \in Z/(p_2)$  and  $\phi \in End(T_D)$ , and assume that  $\phi(\overline{z_1}) \neq 0$  and  $\phi(\overline{z_2}) \neq 0$ . As  $p_1 \neq p_2$ , we find that  $\phi(Z/(p_1)) = Z/(p_1)$  and  $\phi(Z/(p_2)) = Z/(p_2)$ . By taking  $\overline{u} \in Z/(p_1)$  and  $\overline{v} \in Z/(p_2)$  such as  $\overline{u} p_2 \overline{z_1} = \phi(\overline{z_1})$  and  $\overline{v} p_1 \overline{z_2} = \phi(\overline{z_2})$ , we have  $\phi(\overline{z_1}) = (u p_2 + v p_1) \overline{z_1}$  and  $\phi(\overline{z_2}) = (u p_2 + v p_1) \overline{z_2}$ .

Finally, we will see that  $_{Z}T_{D}$  is a *QF*-module. An element of *D* is of the form

$$\begin{pmatrix} \lambda_{11} & \lambda_{12} & O \\ \lambda_{21} & \lambda_{22} & O \\ f_1 & f_2 & q \end{pmatrix}$$

where  $\lambda_{ij} \in Hom(_{\mathbb{Z}}E(\mathbb{Z}/(p_i))), _{\mathbb{Z}}E(\mathbb{Z}/(p_j))), f_i \in Hom(_{\mathbb{Z}}Q, _{\mathbb{Z}}E(\mathbb{Z}/(p_i)))$  and  $q \in Q$  (i=1,2; j=1,2). For any simple submodule  $Y_D \subset T_D$ , let  $0 \neq (x_i, x_2, w) \in Y_D$ . If  $w \neq 0$ , for any  $(\xi_i, \xi_2, \eta) \in T$ , there exist  $f_i \in Hom(_{\mathbb{Z}}Q, _{\mathbb{Z}}E(\mathbb{Z}/(p_i)))$  such that  $(w)f_i = \xi_i \ (i=1,2)$ . Hence we obtain the formula

$$(x_1, x_2, w) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ f_1 & f_2 & \eta/w \end{pmatrix} = (\xi_1, \xi_2, \eta),$$

and  $(x_1, x_2, w) D = T$ . But as  $T_D$  is not simple, it must be w = 0. It is easily seen that if  $x_i \neq 0$ , then  $Y_D = Z/(p_i)$  (i=1,2). (The case both  $x_1 \neq 0$  and  $x_2 \neq 0$  does not occur.) Therefore we have  $Soc(T_D) = Z/(p_1) \oplus Z/(p_2) = Soc(zT)$ , and in the same way as (1), for any prime number p' and for any maximal right ideal  $D_0 \subseteq D$ ,  $Hom(zZ/(p'), zT)_D$  and  $zHom(D/D_{0D}, T_D)$  are simple or zero.

#### References

- [1] Anderson F.W. and Fuller K.R., 1974. Rings and Categories of Modules, Springer-Verlag, NewYork.
- [2] Azumaya G., 1959. A duality theory for injective modules (Theory of Quasi-Frobenius Modules), Amer. J. Math., 81: 249–278.
- [3] Jacobson N., 1956. Structure of Rings, Amer. Math. Soc. Coll. Pub. vol. 37.

# 要 約

完全可約加群の density theorem に関連して, quasi-injective 加群の socle について調べ, *QF* 加群に関連した 例について述べた。