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Let A be a ring with identity I and 4M be a (unital) semisimple left A-module. Then the following density
theorem is well known.

Let D = End(aM) (the endomorphism ring of 4M operating on the opposite side of the scalar). Then for
any ¢ € End(Mp) and my, ms, -, mn € M, there exists ¢« € A such that ¢(m:) = am; (( = 1, 2+, n).

In connection with this theorem, we prove the following Proposition.

Proposition. Let 47 be a quasi-injective left A-module, M = Soc(uT) (the socle of 47T, and assume that
M #+ 0)and D = End(4T). Then

(1) Mp is semisimple as a right D-module;

(2) if A is commutative, then for any mu, msz, -, mn € M and ¢ € End(7Tp), there exists ¢ € A such that
d(m)= am; (=1, 2, n);

(3) if 4T is an essential extension of 4M, then for any m, ms,*, m, € M and ¢ € End(Tp) (assume that
¢(m;) #+ O for some i), there exists # and « in A such that u ¢ (m,) = am; (=1, 2,--+, n) where u ¢(m,)
#+ 0 for some 1.

4T is said to be quasi-injective in case for each monomorphism %: 4.X — 47T and for each homomorphism
f14X — 4T, there exists g: 4T — 4T such that the following diagram is commutative ([1], p. 191).
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Proof of Proposition

(1) Let D’ = End(aM). Then Mp is semisimple ([3], p. 125) and since 47T is quasi-injective, the map D
— D’ (d — d|M) is surjective. So, any D-submodule of M is also D’-submodule and hence Mo is
semisimple.

(2) In case A is commutative, D is an A-algebra. Hence for any ¢ € End(Tp), ¢ is also an A-
homomorphism. So, ¢ (M) C M. Moreover, since for any m € M and d’ € D’, there exists d € D such
that ¢(md’) = ¢(md) = ¢p(m) d = ¢(m) d’. Hence ¢ is a D’-homomorphism as well. Therefore by the
density theorem, there exists ¢« € A such that ¢(m;) = am; (i = 1, 2,-+, n).

(3) Let mu, mz,---, m, € M and ¢ € End(Tp), and assume that ¢(m:) + 0. By the assumption, there
exists us € A such that 0 #+ w: ¢p(m:) € M. If wr p(m2) € M, then putting u2 = 1, we have 0 F uz us ¢ (1)
€ M and uz us $(m2) € M. If us $(m2) € M, then there exists u2 A such that 0 F w2 w1 d(mz) E M
and u2 us ¢p(m:) € M. By continuing this process, we can obtain # in A such that « ¢(m;) € M (i = 1,
2.+, m). Since Mp is semisimple, there exists # € End(Mp) such that the following diagram is commutative

BREE S 2 T AR E BB R, B se
Department of Business Environment Studies, Information Mathematics, Rakuno Gakuen University, Ebetsu, Hokkaido
069-8501, Japan



44 Ryo SAITO

SmD —— M,
)

@
Mp

where ®(x) = u ¢(x) (x € Zm;D) and j is the inclusion map. As % is a D’-homomorphism, by the density
theorem, we have h(m;) = am; and u ¢(m;) = am; (i = 1, 2,--, n).

Some examples

Here, in connection with the above Proposition, we give some examples which are QF-modules in the
sense of [2]. A bimodule 4@ is said to be QF if 4@ and Qs are faithful, and for any simple modules 4+X
and Yz, Hom(uX, 4Q)s and aHom(Ys, Q) are simple or zero.

(1) Let Z be the ring of integers and p be a prime number. We put 7" = E(:Z/(p)) (an injective hull of
Z/(p) and D = End(;T). Then it holds that Soc(:T)= Z/(p) = Soc(T»), and for any z € Z/(p) and ¢
€ End(Tv) C End(Ts), ¢(z) = zoz where ¢(I) = zo € Z/(p). In this case, as -7 is divisible, 7" is faithful.
Moreover for a prime number p’, if p’ = p, then Hom(:Z/(p’), zT)p = Z/(p)p is simple and if p” # p, then
Hom((zZ/(p"), :T)p = 0. For any maximal right ideal Do of D, if Hom(D/Dw, Tp) is not zero,
Hom (D /Do, Tp) is isomorphic to 2Z/(p). Hence zHom(D/Dop, Tv) is simple and z7» is a QF-module.

(2) Let Z be the ring of integers, p: and p» be distinct prime numbers and @ be the fields of rational
numbers. We put ;T = E(Z/(p1)) ® E(:Z/(p2)) ® Q (external direct sum as Z-modules) and D = End(:T).
Although 7 is not an essential extension of Soc(:T), T is an injective hull of Z/(p1) ® Z/(p2) ® Z, and
Soc(:T) = Z/(pr) ® Z/(p2). Let z1 € Z/(p1), 22 € Z/(p2) and ¢ € End(T), and assume that ¢(z:;) + 0 and
#(z2) = 0. As p1 + p2, we find that ¢(Z/(p1) = Z/(p1) and ¢(Z/(p2)) = Z/(ps). By taking u € Z/(p:) and
v € Z/(p2) such as u ps z1 = $(z1) and v p1 22 = (z2), we have ¢(z1) = (u p2 + v p1) zi and ¢(z2) = (u p2 +
v p1) 2z

Finally, we will see that ;7p is a QF -module. An element of D is of the form

Au Az 0
A2z A2z 0
VN q

where 1;; € Hom(GE(Z/(py)), 2E(Z/ (D)), f; € Hom(:Q, £(Z/(p;))) and ¢ € Q (i=1,2; j=1,2). For any
simple submodule Yo C Tp, let O F(x1, x2, w) € Yo. If w + 0, for any (&1, &, n) € T, there exist f; €
Hom (:Q, zE(Z/(p;))) such that (w)f; = &; (i=1,2). Hence we obtain the formula

(21, 22, w) [/ O 0 0 = (&, &, 7),
0 0 0
fi n/w

and (xz, x2, w) D = T. But as Tp is not simple, it must be w = 0. It is easily seen that if x;, # 0, then
Yo = Z/(p;) i=1,2). (The case both x: #+ 0 and x> #+ O does not occur.) Therefore we have Soc(7p) =
Z/(p1) ® Z/(p2) = Soc(:T), and in the same way as (1), for any prime number p’ and for any maximal right
ideal Do € D, Hom(:Z/(p"), zT)p and zHom(D/Duwp, T») are simple or zero.
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