A note on Morita modules and quotient rings

Ryo Saito

酪農学園大学紀要 別 刷 第 31 巻 第 1 号
Reprinted from
＂Journal of Rakuno Gakuen University＂Vol．31，No． 1 （2006）

A note on Morita modules and quotient rings

Ryo SAITO＊
（June 2006）

In this note，every ring has an identity 1 and every module over a ring is unital．A ring extension A / B means B is a subring of A containing 1_{A}（the identity of A ）and a ring homomorphism means such one that the image of 1 is 1 ．
A homomorphism will be usually written at the opposite side of the scalar．
An $A^{\prime}-A$－bimodule ${ }_{A^{\prime}} U_{A}$ is said to be a Morita module if U_{A} is a progenerator and $A^{\prime}=\operatorname{End}\left(U_{A}\right)([7]$ p．98）．

We consider ring extensions A / B and A^{\prime} / B^{\prime} which have Morita modules ${ }_{A^{\prime}} U_{A}$ and ${ }_{B^{\prime}} V_{B}$ ．

Lemma 1．（［7］，p．111）．Under the above situations，the following statements are equivalent．
（1）There exists a B^{\prime}－A－isomorphism $\phi:{ }_{B^{\prime}} \mathrm{V} \otimes{ }_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \rightarrow{ }_{\mathrm{B}^{\prime}} \mathrm{U}_{\mathrm{A}}$ ．
（2）There exists an A^{\prime}－B－isomorphism $\phi^{\prime}:{ }_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} V_{B} \rightarrow{ }_{A^{\prime}} U_{B}$ ．
In this case，the equation $\phi(\mathrm{v} \otimes 1)=\phi^{\prime}(1 \otimes \mathrm{v})$ holds for any $\mathrm{v} \in \mathrm{V}$ ．
Proof．（1）\Rightarrow（2）：Since ${ }_{B^{\prime}} V$ is finitely generated and projective，we have

$$
\begin{aligned}
& { }_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} V_{B}={ }_{A^{\prime}} \operatorname{Hom}\left(U_{A}, U_{A}\right) \otimes_{B^{\prime}} V_{B} \cong{ }_{A^{\prime}} \operatorname{Hom}\left(\operatorname{Hom}\left({ }_{B^{\prime}} V{ }_{,_{B^{\prime}}} U\right)_{A}, U_{A}\right)_{B} \\
\cong & { }_{A^{\prime}} \operatorname{Hom}\left(\operatorname{Hom}\left({ }_{B^{\prime}} V_{B^{\prime}} V \otimes_{\mathrm{B}} A\right)_{A}, U_{A}\right)_{\mathrm{B}} \cong{ }_{A^{\prime}} \operatorname{Hom}\left(\operatorname{Hom}\left(B_{B^{\prime}} \mathrm{V}, \mathrm{~B}^{\prime} V\right) \otimes_{\mathrm{B}} \mathrm{~A}_{A}, \mathrm{U}_{A}\right)_{\mathrm{B}} \\
\cong & { }_{A^{\prime}} \operatorname{Hom}\left(\mathrm{A}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)_{\mathrm{B}} \cong{ }_{\mathrm{A}^{\prime}} \mathrm{U}_{\mathrm{B}} .
\end{aligned}
$$

Hence an isomorphism ϕ^{\prime} exists and the above correspondences are given by

$$
\begin{aligned}
& \sum a_{j}^{\prime} \otimes v_{j} \rightarrow \sum\left(x \rightarrow a_{j}^{\prime} x\right) \otimes v_{j} \rightarrow\left(g \rightarrow \sum a_{j}^{\prime} \cdot\left(v_{j}\right) g\right) \\
\rightarrow & \left(\mathrm{h} \rightarrow \sum a_{j}^{\prime} \cdot \phi\left(\left(v_{j}\right) h\right)\right)=((v \rightarrow v \otimes a) \rightarrow u a) \leftarrow(1 \otimes a \rightarrow u a) \\
\leftarrow & (\mathrm{a} \rightarrow \mathrm{ua}) \leftarrow \mathrm{u}=\phi^{\prime}\left(\sum \mathrm{a}_{\mathrm{j}}^{\prime} \otimes \mathrm{v}_{\mathrm{j}}\right) .
\end{aligned}
$$

So，for any $\mathrm{a} \in \mathrm{A}, \sum \mathrm{a}_{\mathrm{j}}^{\prime} \cdot \phi\left(\mathrm{v}_{\mathrm{j}} \otimes 1\right) \cdot \mathrm{a}=\sum \mathrm{a}_{\mathrm{j}} \cdot \phi\left(\mathrm{v}_{\mathrm{j}} \otimes \mathrm{a}\right)=$ ua $=\phi^{\prime}\left(\sum \mathrm{a}_{\mathrm{j}}{ }_{\mathrm{j}} \otimes \mathrm{v}_{\mathrm{j}}\right) \cdot \mathrm{a}=\sum \mathrm{a}_{\mathrm{j}} \cdot \phi^{\prime}\left(1 \otimes \mathrm{v}_{\mathrm{j}}\right) \cdot \mathrm{a}$ ．
Especially，$\phi(\mathrm{v} \otimes 1)=\phi^{\prime}(1 \otimes \mathrm{v})$ for any $\mathrm{v} \in \mathrm{V}$ ．
$(2) \Rightarrow(1)$ ：This is similarly proved．
If the conditions of Lemma 1 are satisfied，then ring extensions A / B and A^{\prime} / B^{\prime} are said to be Morita equivalent（［7］p．111，［5］p．74）．

Proposition 2．If Lemma 1 is satisfied，then the following statements are equivalent．
（1）The map ${ }_{A} A \otimes_{B} A_{A} \rightarrow{ }_{A} A_{A}(x \otimes y \rightarrow x y)$ is an isomorphism．
（2）The map ${ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \rightarrow{ }_{\mathrm{A}^{\prime}} \mathrm{U}_{\mathrm{A}}\left(\mathrm{a}^{\prime} \otimes \mathrm{V} \otimes \mathrm{a} \rightarrow \mathrm{a}^{\prime} \phi(\mathrm{v} \otimes \mathrm{a})=\phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \mathrm{a}\right)$ is an isomorphism．
（3）The map ${ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}_{\mathrm{A}^{\prime}} \rightarrow{ }_{A^{\prime}} \mathrm{A}_{\mathrm{A}^{\prime}}^{\prime}\left(\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime} \rightarrow \mathrm{x}^{\prime} \mathrm{y}^{\prime}\right)$ is an isomorphism．
Proof．（1）$\Rightarrow(2)$ ：By Lemma 1，we have

$$
{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{U} \otimes_{\mathrm{B}} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{U} \otimes_{\mathrm{A}} \mathrm{~A} \otimes_{\mathrm{B}} \mathrm{~A}_{\mathrm{A}} \cong{ }_{\mathrm{A}^{\prime}} \mathrm{U} \otimes_{\mathrm{A}} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{U}_{\mathrm{A}} .
$$

$$
\mathrm{a}^{\prime} \otimes \mathrm{v} \otimes \mathrm{a} \rightarrow \phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \otimes \mathrm{a} \rightarrow \phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \otimes 1 \otimes \mathrm{a} \rightarrow \phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \otimes \mathrm{a} \rightarrow \phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \mathrm{a}
$$

$$
\phi^{\prime-1}(\mathrm{u}) \otimes 1 \leftarrow \mathrm{u} \otimes 1 \leftarrow \mathrm{u} \otimes 1 \otimes 1 \leftarrow \mathrm{u} \otimes 1 \leftarrow \mathrm{u}
$$

（2）$\Rightarrow(3)$ ：Since ${ }_{A^{\prime}} \mathrm{U}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{B^{\prime}} V \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{U}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime} \otimes_{A^{\prime}} \mathrm{U}_{\mathrm{A}}$ $\mathrm{u} \rightarrow \phi^{\prime-1}(\mathrm{u}) \otimes 1 \rightarrow \sum \mathrm{a}_{\mathrm{j}} \otimes \phi\left(\mathrm{v}_{\mathrm{j}} \otimes 1\right) \rightarrow \sum \mathrm{a}_{\mathrm{j}} \otimes 1 \otimes \phi\left(\mathrm{v}_{\mathrm{j}} \otimes 1\right)$ where $\phi^{\prime-1}(\mathrm{u})=\sum \mathrm{a}_{\mathrm{j}} \otimes \mathrm{v}_{\mathrm{j}}$
＊酪農学園大学環境システム学部環境マネジメント学科情報数学研究室
Department of Environmental Management Studies，Information Mathematics，Rakuno Gakuen University，Hokkaido， 069－8501，Japan
$\sum \phi^{\prime}\left(\mathrm{x}^{\prime} \otimes \mathrm{w}_{\mathrm{k}}\right) \mathrm{s}_{\mathrm{k}} \leftarrow \mathrm{x}^{\prime} \otimes \phi^{-1}\left(\mathrm{y}^{\prime} \mathrm{t}\right) \leftarrow \mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime} \mathrm{t} \leftarrow \mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime} \otimes \mathrm{t} \quad$ where $\phi^{-1}\left(\mathrm{y}^{\prime} \mathrm{t}\right)=\sum \mathrm{w}_{\mathrm{k}} \otimes \mathrm{s}_{\mathrm{k}}$ and U_{A} is finitely generated and projective, we have
(3) $\Rightarrow(2)$: By Lemma 1, we have ${ }_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} V \otimes_{B} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{U}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{B^{\prime}} \mathrm{A}^{\prime} \otimes_{A^{\prime}} \mathrm{U}_{\mathrm{A}}$
$\cong{ }_{A^{\prime}} \mathrm{U}_{\mathrm{A}} \quad \mathrm{a}^{\prime} \otimes_{\mathrm{v}} \otimes \mathrm{a} \rightarrow \mathrm{a}^{\prime} \otimes \phi(\mathrm{v} \otimes \mathrm{a}) \rightarrow \mathrm{a}^{\prime} \otimes 1 \otimes \phi(\mathrm{v} \otimes \mathrm{a}) \rightarrow \mathrm{a}^{\prime} \otimes \phi(\mathrm{v} \otimes \mathrm{a})$.
(2) $\Rightarrow(1)$: Since ${ }_{A^{\prime}} \mathrm{U}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \cong{ }_{A^{\prime}} \mathrm{U} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \cong{ }_{\mathrm{A}^{\prime}} \mathrm{U} \otimes_{\mathrm{A}} \mathrm{A} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}$

$$
\mathrm{u} \rightarrow \phi^{\prime-1}(\mathrm{u}) \otimes 1 \rightarrow \mathrm{u} \otimes 1 \rightarrow \mathrm{u} \otimes 1 \otimes 1
$$

and ${ }_{A^{\prime}} \mathrm{U}$ is finitely generated and projective, we have

Lemma 3. If Lemma 1 is satisfied, then
(1) ${ }_{A} \operatorname{Hom}\left(U_{A}, A_{A}\right)_{A^{\prime}} \cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}} U_{A^{\prime}} A^{\prime}\right)_{A^{\prime}}\left(f \rightarrow f^{\prime}\right)$
(2) ${ }_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{V}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}} \operatorname{Hom}\left({ }_{\mathrm{B}^{\prime}} \mathrm{V}_{\mathrm{B}^{\prime}} \mathrm{B}^{\prime}\right)_{\mathrm{B}^{\prime}}\left(\mathrm{g} \rightarrow \mathrm{g}^{\prime}\right)$

For the above correspondences, the equations $\mathrm{y} \cdot \mathrm{f}(\mathrm{x})=(\mathrm{y}) \mathrm{f}^{\prime} \cdot \mathrm{x}$ and $\mathrm{z} \cdot \mathrm{g}(\mathrm{w})=(\mathrm{z}) \mathrm{g}^{\prime} \cdot \mathrm{w}$ hold for any $\mathrm{x}, \mathrm{y} \in \mathrm{U}$ and $\mathrm{w}, z \in \mathrm{~V}$.
Proof. (1) We have ${ }_{A} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{A}_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{A}} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \operatorname{Hom}\left({ }_{A^{\prime}} \mathrm{U}_{\mathrm{A}^{\prime}} \mathrm{U}\right)_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}}$
$\cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}}, U_{A^{\prime}} \operatorname{Hom}\left(U_{A}, U_{A}\right)\right)_{A^{\prime}} \cong{ }_{A} \operatorname{Hom}\left(A_{A^{\prime}} U_{A^{\prime}} A^{\prime}\right)_{A^{\prime}}$

$$
\mathrm{f} \rightarrow \mathrm{~h}_{1}:\left(\mathrm{x}_{1} \rightarrow\left(\mathrm{y}_{1} \rightarrow \mathrm{y}_{1} \cdot \mathrm{f}\left(\mathrm{x}_{1}\right)\right)\right.
$$

$$
\rightarrow \mathrm{h}_{2}:\left(\mathrm{y}_{2} \rightarrow\left(\mathrm{x}_{2} \rightarrow\left(\mathrm{y}_{2}\right)\left[\mathrm{h}_{1}\left(\mathrm{x}_{2}\right)\right]=\mathrm{y}_{2} \cdot \mathrm{f}\left(\mathrm{x}_{2}\right)\right) \rightarrow \mathrm{f}^{\prime}\right.
$$

and $\left(\mathrm{y}_{2}\right) \mathrm{f}^{\prime} \cdot \mathrm{x}_{2}=\left[\left(\mathrm{y}_{2}\right) \mathrm{f}^{\prime}\right]\left(\mathrm{x}_{2}\right)=\mathrm{y}_{2} \cdot \mathrm{f}\left(\mathrm{x}_{2}\right)$.
(2) is similarly proved.

The modules which were defined in (1) and (2) of Lemma 3 will be written as U^{*} and V^{*} respectively.

Lemma 4. If Lemma 1 is satisfied, then
(1) ${ }_{A} U{ }^{*}{ }_{B^{\prime}} \cong{ }_{A} \operatorname{Hom}\left(V_{B}, A_{B}\right)_{B^{\prime}}$
(2) ${ }_{B} U^{*}{ }_{A^{\prime}} \cong{ }_{B} \operatorname{Hom}\left({ }_{B^{\prime}} V{ }_{,_{B^{\prime}}} A^{\prime}\right)_{A^{\prime}}$
(3) ${ }_{A^{\prime}} \mathrm{U} \otimes{ }_{B} V^{*}{ }_{B^{\prime}} \cong{ }_{A^{\prime}} \mathrm{A}_{\mathrm{B}^{\prime}}^{\prime}$
(4) ${ }_{B^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{U}^{*}{ }_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{A}_{\mathrm{A}^{\prime}}$
(5) ${ }_{\mathrm{B}} \mathrm{V}^{*} \otimes_{{ }_{B}} \mathrm{U}_{\mathrm{A}} \cong{ }_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}$
(6) ${ }_{A} U^{*} \otimes{ }_{B^{\prime}} V_{B} \cong{ }_{A} A_{B}$

Proof. (1) By Lemma 1, we have ${ }_{A} U^{*}{ }_{B^{\prime}} \cong{ }_{A} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{A}_{\mathrm{A}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{A}} \operatorname{Hom}\left(\mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}, \mathrm{A}_{\mathrm{A}}\right)_{\mathrm{B}^{\prime}}$ $\cong{ }_{A} \operatorname{Hom}\left(V_{B}, \operatorname{Hom}\left(A_{A}, A_{A}\right)_{B}\right)_{B^{\prime}} \cong{ }_{A} \operatorname{Hom}\left(V_{B}, A_{B}\right)_{B^{\prime}}$.
(2) By Lemma 1, we have ${ }_{B} U^{*}{ }_{A^{\prime}} \cong{ }_{B} \operatorname{Hom}\left({ }_{A^{\prime}} U_{A^{\prime}} A^{\prime}\right)_{A^{\prime}} \cong{ }_{B} \operatorname{Hom}\left({ }_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} V_{A^{\prime}} A^{\prime}\right)_{A^{\prime}}$ $\cong{ }_{\mathrm{B}} \operatorname{Hom}\left({ }_{B^{\prime}} V_{\mathrm{B}^{\prime}} \operatorname{Hom}\left({ }_{A^{\prime}} \mathrm{A}^{\prime}{ }_{\mathrm{A}^{\prime}} \mathrm{A}^{\prime}\right)\right)_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}} \operatorname{Hom}\left({ }_{\mathrm{B}^{\prime}} V \mathrm{~V}_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}\right)_{\mathrm{A}^{\prime}}$.
(3) Since V_{B} is finitely generated and projective, by Lemma 1, we have ${ }_{A^{\prime}} U \otimes_{B} V^{*}{ }_{B^{\prime}} \cong{ }_{A^{\prime}} U \otimes_{B} \operatorname{Hom}\left(V_{B}, B_{B}\right)_{B^{\prime}} \cong{ }_{A^{\prime}} \operatorname{Hom}\left(V_{B}, U \otimes_{B} B_{B}\right)_{B^{\prime}} \cong{ }_{A^{\prime}} \operatorname{Hom}\left(V_{B}, U_{B}\right)_{B^{\prime}}$ $\cong{ }_{A^{\prime}} \operatorname{Hom}\left(V_{B}, A^{\prime} \otimes_{B^{\prime}} V_{B}\right)_{B^{\prime}} \cong{ }_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} \operatorname{Hom}\left(V_{B}, V_{B}\right)_{B^{\prime}} \cong{ }_{A^{\prime}} A_{B^{\prime}}^{\prime}$.
(4) Since U_{A} is finitely generated and projective, by Lemma 1, we have ${ }_{B^{\prime}} V \otimes_{\mathrm{B}} \mathrm{U}^{*}{ }_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{A}_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{A}_{\mathrm{A}^{\prime}}$.
(5) By Lemma 1, we have ${ }_{\mathrm{B}} \mathrm{V}^{*} \otimes_{\mathrm{B}^{\prime}} \mathrm{U}_{\mathrm{A}} \cong{ }_{\mathrm{B}} \mathrm{V}^{*} \otimes_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}} \cong{ }_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}$.
(6) Since ${ }_{A^{\prime}} \mathrm{U}$ is finitely generated and projective, by Lemma 1, we have ${ }_{A} U^{*} \otimes_{B^{\prime}} V_{B} \cong{ }_{A} \operatorname{Hom}\left(A_{A^{\prime}} U_{A^{\prime}} A^{\prime}\right) \otimes_{B^{\prime}} V_{B} \cong{ }_{A} \operatorname{Hom}\left(A_{A^{\prime}} U_{A^{\prime}} A^{\prime} \otimes_{B^{\prime}} V\right)_{B} \cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}} U U_{A^{\prime}} U\right)_{B} \cong{ }_{A} A_{B}$.

$$
\begin{aligned}
& { }_{A} \mathrm{~A} \otimes_{B} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}} \mathrm{U},{ }_{A^{\prime}} \mathrm{U}\right) \otimes_{\mathrm{A}} \mathrm{~A} \otimes_{B} \mathrm{~A}_{\mathrm{A}} \cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}} \mathrm{U},{ }_{A^{\prime}} \mathrm{U} \otimes_{\mathrm{A}} \mathrm{~A} \otimes_{B} \mathrm{~A}_{A}\right) \\
& \cong{ }_{A} \operatorname{Hom}\left({ }_{A^{\prime}} \mathrm{U},{ }_{A^{\prime}} \mathrm{U}\right)_{\mathrm{A}} \cong{ }_{A} \mathrm{~A}_{\mathrm{A}} \\
& \mathrm{x} \otimes \mathrm{y} \rightarrow(\mathrm{u} \rightarrow \mathrm{ux}) \otimes 1 \otimes \mathrm{y} \rightarrow(\mathrm{u} \rightarrow \mathrm{ux} \otimes 1 \otimes \mathrm{y}) \rightarrow(\mathrm{u} \rightarrow \mathrm{uxy}) \rightarrow \mathrm{xy} .
\end{aligned}
$$

$$
\begin{aligned}
& { }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{B^{\prime}} \mathrm{A}_{A^{\prime}} \cong{ }_{A^{\prime}} \mathrm{A}^{\prime} \otimes_{B^{\prime}} \mathrm{A}^{\prime} \otimes_{A^{\prime}} \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{U}_{\mathrm{A}}\right)_{A^{\prime}} \cong{ }_{A^{\prime}} \operatorname{Hom}\left(\mathrm{U}_{A}, \mathrm{~A}^{\prime} \otimes_{B^{\prime}} \mathrm{A}^{\prime} \otimes_{A^{\prime}} \mathrm{U}_{A}\right)_{A^{\prime}} \\
& \cong{ }_{A^{\prime}} \operatorname{Hom}\left(\mathrm{U}_{A}, \mathrm{U}_{\mathrm{A}}\right)_{\mathrm{A}^{\prime}} \cong{ }_{A^{\prime}} \mathrm{A}_{A^{\prime}} \text {. } \\
& x^{\prime} \otimes y^{\prime} \rightarrow \mathrm{x}^{\prime} \otimes 1 \otimes\left(\mathrm{u} \rightarrow \mathrm{y}^{\prime} \mathrm{u}\right) \rightarrow\left(\mathrm{t} \rightarrow \mathrm{x}^{\prime} \otimes 1 \otimes \mathrm{y}^{\prime} \mathrm{t}=\mathrm{x}^{\prime} \otimes \mathrm{y}^{\prime} \otimes \mathrm{t}\right) \\
& \rightarrow\left(t \rightarrow \Sigma \phi^{\prime}\left(x^{\prime} \otimes w_{k}\right) s_{k}=\Sigma x^{\prime} \phi\left(w_{k} \otimes s_{k}\right)=x^{\prime} y^{\prime} t\right) \rightarrow x^{\prime} y^{\prime} \text {. }
\end{aligned}
$$

Proposition 5. If Lemma 1 is satisfied, then we have
(1) ${ }_{B} A$ is flat if and only if ${ }_{B^{\prime}} A^{\prime}$ is flat.
(2) A_{B} is flat if and only if $A_{B^{\prime}}^{\prime}$ is flat.

Proof. (1) If ${ }_{B} A$ is flat, then ${ }_{B^{\prime}} V \otimes_{B} A \cong{ }_{B^{\prime}} U$ is flat and hence ${ }_{B^{\prime}} U \otimes_{A} U^{*} \cong{ }_{B^{\prime}} A^{\prime}$ is flat. If ${ }_{B^{\prime}} A^{\prime}$ is flat, then ${ }_{B^{\prime}} U \otimes_{A} U^{*}$ is flat and by Lemma $4(5),{ }_{B} V^{*} \otimes_{B^{\prime}} U \otimes_{A} U^{*} \cong{ }_{B} A \otimes_{A} U^{*} \cong{ }_{B} U^{*}$ is flat. Hence ${ }_{B} U^{*} \otimes_{A^{\prime}} U \cong{ }_{B} A$ is flat.
(2) is similarly proved by Lemma 4 (6).

Let ${ }_{A} \boldsymbol{M}_{\mathrm{B}}$ be the isomorphism classes of A-B-bimodules. We consider the following two diagrams.

where, for example, the map $\left[\mathrm{U}_{\mathrm{A}} \otimes\right]$ is defined by $\left[\mathrm{U}_{\mathrm{A}} \otimes\right]\left[{ }_{A} \mathrm{X}_{\mathrm{B}}\right]=\left[{ }_{A^{\prime}} \mathrm{U} \otimes_{A} \mathrm{X}_{\mathrm{B}}\right]$.
If the conditions of Lemma 1 and Proposition 2 are satisfied, in each isomorphism classes of diagram 1 and diagram 2, a binary multiplication are defined with a left identity and a right identity respectively.
For example, the multiplication in ${ }_{A} \boldsymbol{M}_{B}$ is defined by $\left[{ }_{A} X_{B}\right]\left[{ }_{A} Y_{B}\right]=\left[{ }_{A} X \otimes_{B} Y_{B}\right]$, and since ${ }_{A} A \otimes_{B} Y_{B}$ $\cong{ }_{A} A \otimes_{B} A \otimes_{A} Y_{B} \cong{ }_{A} A \otimes_{A} Y_{B} \cong{ }_{A} Y_{B},\left[{ }_{A} A_{B}\right]$. is a left identity. The multiplication in ${ }_{A} M_{B}$ is defined by $\left[{ }_{A^{\prime}} \mathrm{X}_{\mathrm{B}}\right]\left[{ }_{A^{\prime}} \mathrm{Y}_{\mathrm{B}}\right]=\left[{ }_{A^{\prime}} \mathrm{U} \otimes_{A} \mathrm{U}^{*} \otimes_{A^{\prime}} \mathrm{X} \otimes_{\mathrm{B}} \mathrm{U}^{*} \otimes_{A^{\prime}} \mathrm{Y}_{\mathrm{B}}\right]=\left[{ }_{A^{\prime}} \mathrm{X} \otimes_{\mathrm{B}} \mathrm{U}^{*} \otimes_{A^{\prime}} \mathrm{Y}_{\mathrm{B}}\right]$ and $\left[{ }_{A^{\prime}} \mathrm{U}_{\mathrm{B}}\right]$. is a left identity. By Lemma 4 (4), the multiplication in ${ }_{A^{\prime}} \mathrm{M}_{\mathrm{B}^{\prime}}$ is defined by $\left[{ }_{A^{\prime}} \mathrm{X}_{\mathrm{B}^{\prime}}\right]\left[{ }_{A^{\prime}} \mathrm{Y}_{\mathrm{B}^{\prime}}\right]=\left[{ }_{A^{\prime}} \mathrm{U} \otimes_{\mathrm{A}} \mathrm{U}^{*} \otimes_{A^{\prime}} \mathrm{X} \otimes_{B^{\prime}} \mathrm{V} \otimes_{{ }_{B}} \mathrm{U}^{*} \otimes_{A^{\prime}} \mathrm{Y}\right.$ $\left.\otimes_{B^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{V}^{*}{ }_{\mathrm{B}^{\prime}}\right]=\left[{ }_{A^{\prime}} \mathrm{X} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime} \otimes_{A^{\prime}} \mathrm{Y}_{\mathrm{B}}\right]=\left[{ }_{A^{\prime}} \mathrm{X} \otimes_{B^{\prime}} \mathrm{Y}_{\mathrm{B}^{\prime}}\right]$ and $\left[{ }_{A^{\prime}} \mathrm{A}_{B^{\prime}}^{\prime}\right]$ is a left identity. The multiplication in ${ }_{A} \boldsymbol{M}_{B^{\prime}}$ is defined by $\left[{ }_{A} X_{B^{\prime}}\right]\left[{ }_{A} Y_{B^{\prime}}\right]=\left[{ }_{A} X \otimes_{B^{\prime}} V \otimes_{B} Y_{B^{\prime}}\right]$ and by Lemma $4(1),\left[{ }_{A} U^{*}{ }_{B^{\prime}}\right]=\left[{ }_{A} A \otimes_{B} V^{*}{ }_{B^{\prime}}\right]$ is a left identity.
We can consider similarly in the diagram 2 , and $\left[{ }_{B} A_{A}\right]$ is a right identity of ${ }_{B} M_{A}$.

Proposition 6. Maps of diagram 1 (resp. diagram 2) are bijective and preserve the multiplications and left (resp. right) identities.

Let ${ }_{B^{\prime}} V_{B}$ be a Morita module. It is well known that there exists a one-to-one correspondence between the set of (two sided) ideals $\left\{\mathrm{J}^{\prime}\right\}$ of B^{\prime} and the set of (two sided) ideals $\{\mathrm{J}\}$ of B under the correspondence $J^{\prime} \rightarrow\left\{\mathrm{b} \in \mathrm{B} \mid \mathrm{Vb} \subseteq \mathrm{J}^{\prime} \mathrm{V}\right\}$ and $\left\{\mathrm{b}^{\prime} \in \mathrm{B}^{\prime} \mid \mathrm{b}^{\prime} \mathrm{V} \subseteq \mathrm{VJ}\right\} \leftarrow \mathrm{J}([2], \mathrm{p} .6)$.

In this note, we will always assume that B is a right Noetherian and right hereditary ring. That is, B is right Noetherian and every right ideal of B is projective. Then B^{\prime} is also a right Noetherian and right hereditary ring ([3], p.378).

An ideal J of B is called dense as a right ideal if $b J=0$ then $b=0$ for any $b \in B$ ([6], p.96).

Let $\boldsymbol{D}=\{\mathrm{J} \mid \mathrm{J}$ is an ideal of B and dense as a right ideal of B$\}$. Then,
(1) for ideals J and K of B, if $J \in D$ and $J \subseteq K$, then $K \in D$,
(2) for ideals J and K of B, if $J \in D$ and $K \in D$, then $J K \in D$.

That is, D is a filter.

Let $A=\underset{\vec{D}}{\lim } \operatorname{Hom}\left(J_{B}, B_{B}\right)$ (a ring of right quotients of $\left.B\right)([1])$. B is canonically a subring of A.
Lemma 7. For any $J, K \in D$, we have

$$
{ }_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~K}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}} \cong{ }_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{KJ}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}} .
$$

Proof. Since K_{B} is finitely generated and projective, we have

$$
\begin{aligned}
& \quad{ }_{B} \operatorname{Hom}\left(J_{B}, B_{B}\right) \otimes_{B} \operatorname{Hom}\left(K_{B}, B_{B}\right)_{B} \cong{ }_{B} \operatorname{Hom}\left(K_{B}, \operatorname{Hom}\left(J_{B}, B_{B}\right) \otimes_{B} B_{B}\right)_{B} \\
& \cong{ }_{B} \operatorname{Hom}\left(K_{B}, \operatorname{Hom}\left(J_{B}, B_{B}\right)_{B}\right)_{B} \cong{ }_{B} \operatorname{Hom}\left(K \otimes_{B} J_{B}, B_{B}\right)_{B} \\
& \cong{ }_{B} \operatorname{Hom}\left(\mathrm{KJ}_{B}, B_{B}\right)_{B} \\
& \quad \quad h_{1} \otimes h_{2} \rightarrow\left(x_{1} \rightarrow h_{1} \otimes h_{2}\left(x_{1}\right)\right) \\
& \quad \rightarrow\left(x_{1} \rightarrow h_{1} \cdot h_{2}\left(x_{1}\right)\right) \rightarrow\left(x_{1} \otimes x_{2} \rightarrow h_{1}\left[h_{2}\left(x_{1}\right) \cdot x_{2}\right]\right) \\
& \quad \rightarrow\left(x_{1} \cdot x_{2} \rightarrow\left[h_{1} \cdot h_{2}\right]\left(x_{1} \cdot x_{2}\right)\right)=h_{1} \cdot h_{2} .
\end{aligned}
$$

Proposition 8. Under the above situations, we have the map $A \otimes_{B} A \rightarrow A\left(a_{1} \otimes a_{2} \rightarrow a_{1} a_{2}\right)$ is an isomorphism and ${ }_{B} A$ is flat.
Proof. Since any element of D is finitely generated and projective, by Lemma 7,

$$
\begin{aligned}
& A \otimes_{B} A=\underset{\vec{D}}{\lim } \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \lim _{\vec{D}} \operatorname{Hom}\left(\mathrm{~K}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \cong \underset{\vec{D} \times \boldsymbol{D}}{\lim } \operatorname{Hom}\left(\mathrm{K} \otimes_{\mathrm{B}} J, \mathrm{~B}_{\mathrm{B}}\right) \\
\cong & \underset{\vec{D} \times \boldsymbol{D}}{\lim } \operatorname{Hom}\left(\mathrm{KJ}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \cong \underset{\vec{D}}{\lim } \operatorname{Hom}\left(\mathrm{I}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)=\mathrm{A} .
\end{aligned}
$$

Let $0 \rightarrow X_{B} \rightarrow Y_{B}$ is exact. Since $0 \rightarrow \operatorname{Hom}\left(J_{B}, X_{B}\right) \rightarrow \operatorname{Hom}\left(J_{B}, Y_{B}\right)$ is exact and J_{B} is finitely generated and projective, $0 \rightarrow X \otimes_{B} \operatorname{Hom}\left(J_{B}, B_{B}\right) \rightarrow Y \otimes_{B} \operatorname{Hom}\left(J_{B}, B_{B}\right)$ is exact. Hence, $0 \rightarrow X \otimes_{B} \lim _{\vec{D}} \operatorname{Hom}\left(J_{B}, B_{B}\right)$ $\rightarrow \mathrm{Y} \otimes_{\mathrm{B}} \underset{\vec{D}}{ } \lim \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}\right)$ is exact.

Lemma 9. Let $\mathrm{J} \in \mathrm{D}$ and $\mathrm{J}^{\prime}=\left\{\mathrm{b}^{\prime} \in \mathrm{B}^{\prime} \mid \mathrm{b}^{\prime} \mathrm{V} \subseteq \mathrm{VJ}\right\}$ be the ideal of B^{\prime} which corresponds to J . Then, J^{\prime} is dense as a right ideal of B^{\prime} and

$$
\begin{aligned}
& { }_{B^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{J}_{\mathrm{B}^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}^{\prime}} \\
& \tau \otimes \delta \otimes \xi \rightarrow\left(\mathrm{y} \rightarrow \Sigma\left[\tau \cdot\left\{\delta \cdot \xi\left(\mathrm{v}_{\mathrm{j}}\right)\right\}\left(\mathrm{x}_{\mathrm{j}}\right)\right] \psi_{\mathrm{j}}\right)
\end{aligned}
$$

where $J^{\prime} \cong{ }_{B^{\prime}} V \otimes_{B} J \otimes_{B} V^{*}{ }_{B^{\prime}}={ }_{B^{\prime}} V \otimes_{B} J \otimes_{B} \operatorname{Hom}\left({ }_{B^{\prime}} V{ }_{B^{\prime}} B^{\prime}\right)_{B^{\prime}}\left(y \rightarrow \sum v_{j} \otimes X_{j} \otimes \psi^{\prime}{ }_{j}\right)$
$\left(y \in J^{\prime}, v_{j} \in V, x_{j} \in J, \psi_{j}^{\prime} \in V^{*}\right)$. In this case, $y=\sum\left(v_{j} x_{j}\right) \psi^{\prime}{ }_{j}$.
Proof. Since V_{B} is finitely generated and projective,

$$
\begin{aligned}
& \mathrm{J}^{\prime} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{V}_{\mathrm{B}}, \mathrm{VJ}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{VJ} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \\
& \cong \cong{ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{~J} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{~J} \otimes_{\mathrm{B}} \operatorname{Hom}\left({ }_{B^{\prime}} V,_{B^{\prime}} \mathrm{B}^{\prime}\right)_{\mathrm{B}^{\prime}}, \\
& \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left({ }_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}} J \mathrm{~J}^{*}\right)_{\mathrm{B}^{\prime}} \\
& \mathrm{y} \rightarrow(\mathrm{v} \rightarrow \mathrm{yv}) \rightarrow \sum \mathrm{v}_{\mathrm{j}} \mathrm{x}_{\mathrm{j}} \otimes \psi_{\mathrm{j}} \\
& \rightarrow \sum \mathrm{v}_{\mathrm{j}} \otimes \mathrm{x}_{\mathrm{j}} \otimes \psi_{\mathrm{j}} \rightarrow \sum \mathrm{v}_{\mathrm{j}} \otimes \mathrm{x}_{\mathrm{j}} \otimes \psi_{\mathrm{j}}^{\prime} \\
& \rightarrow\left(\mathrm{g} \rightarrow \sum \mathrm{~g}\left(\mathrm{v}_{\mathrm{j}}\right) \mathrm{x}_{\mathrm{j}} \psi_{\mathrm{j}}\right) .
\end{aligned}
$$

In this case, by Lemma 3, for any $v \in V$, $y v=\sum v_{j} \cdot x_{j} \cdot \psi_{j}(v)=\sum\left(v_{j} \cdot x_{j}\right) \psi_{j}^{\prime} \cdot v$.
Hence $y=\sum\left(v_{j} x_{j}\right) \psi_{j}{ }_{j}$. Moreover, since $\left[\Sigma g\left(v_{j}\right) x_{j} \psi_{j}\right](v)=\sum g\left(v_{j}\right) x_{j} \psi_{j}(v)=g\left(\sum v_{j} x_{j} \psi_{j}(v)\right)$
$=g\left(\sum\left(v_{j} x_{j}\right) \psi_{j}^{\prime} v^{2}\right)=g(y v)=(g y)(v)$, we have $\sum g\left(v_{j}\right) x_{j} \psi_{j}=g y$.
Let $\mathrm{b}^{\prime} \mathrm{J}^{\prime}=0$. For any $\mathrm{v} \in \mathrm{V}$ and $\mathrm{w} \in \mathrm{JV}^{*}$, we can define the map $\eta_{\mathrm{v}, \mathrm{w}}:{ }_{\mathrm{B}} \mathrm{V}^{*} \rightarrow{ }_{\mathrm{B}} \mathrm{JV}^{*}(\mathrm{~g} \rightarrow \mathrm{~g}(\mathrm{v}) \mathrm{w})$. Then, for any $g \in V^{*}$, we have $0=(g)\left[b^{\prime} \eta_{v, w}\right]=\left(g b^{\prime}\right) \eta_{v, w}=\left(g^{\prime}\right)(v) w=g\left(b^{\prime} v\right) w$. Since ${ }_{\mathrm{B}} J V^{*}$ is faithful, $g\left(b^{\prime} v\right)=0$. Hence $\mathrm{b}^{\prime} \mathrm{v}=0$ and $\mathrm{b}^{\prime}=0$. Further,

$$
\begin{aligned}
& { }_{\mathrm{B}^{\prime}} V \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}^{\prime}}={ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \\
& \cong{ }_{B^{\prime}} V \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}}, \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V} \otimes_{\mathrm{B}} \mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \\
& \cong{ }_{B^{\prime}} \operatorname{Hom}\left(\mathrm{V} \otimes_{\mathrm{B}} \mathrm{~J}_{\mathrm{B}}, \mathrm{~V}_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{V} \otimes_{\mathrm{B}} \mathrm{~J}_{\mathrm{B}}, \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}^{\prime},}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}}\right)_{\mathrm{B}^{\prime}} \\
& \cong{ }_{B^{\prime}} \operatorname{Hom}\left(\mathrm{V} \otimes_{\mathrm{B}} \mathrm{~J} \otimes_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}^{\prime}}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \operatorname{Hom}\left(\mathrm{J}_{B^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}^{\prime}} .
\end{aligned}
$$

Theorem 10. Let $A=\underset{\vec{D}}{\lim } \operatorname{Hom}\left(J_{B}, B_{B}\right)$ (a ring of right quotients of B), $U=V \otimes_{B} A$, and $A^{\prime}=\operatorname{End}\left(U_{A}\right)$.
And let $\mathbf{D}^{\prime}=\left\{\mathrm{J}^{\prime} \subseteq \mathrm{B}^{\prime} \mid \mathrm{J}^{\prime}\right.$ is an ideal of B^{\prime} and dense as a right ideal $\}$. Then
$\mathrm{A}^{\prime} \cong \underset{\overrightarrow{D^{\prime}}}{\lim ^{\prime}} \operatorname{Hom}\left(\mathrm{J}_{\mathrm{B}^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)$ (a ring of right quotient of $\left.\mathrm{B}^{\prime}\right)$ and ${ }_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}$ is flat.
Proof. By Lemma 9, we have

$$
\begin{aligned}
& \underset{B^{\prime}}{\overrightarrow{D^{\prime}}} \lim ^{\prime} \operatorname{Hom}\left(\mathrm{J}_{\mathrm{B}^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}^{\prime}} \cong{ }_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \underset{\vec{D}}{ } \lim \operatorname{Hom}\left(\mathrm{~J}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right) \otimes_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}^{\prime}} \\
& \cong{ }_{B^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{~A} \otimes_{\mathrm{B}} \mathrm{~V}^{*}{ }_{\mathrm{B}^{\prime}}={ }_{\mathrm{B}^{\prime}} \mathrm{U} \otimes_{\mathrm{B}} \operatorname{Hom}\left(\mathrm{~V}_{\mathrm{B}}, \mathrm{~B}_{\mathrm{B}}\right)_{\mathrm{B}} \\
& \cong{ }_{B^{\prime}} \operatorname{Hom}\left(V_{B}, U_{B}\right)_{B^{\prime}} \\
& \cong{ }_{B^{\prime}} \operatorname{Hom}\left(V_{B}, A^{\prime} \otimes_{B^{\prime}} V_{B}\right)_{B^{\prime}} \cong{ }_{B^{\prime}} A^{\prime} \otimes_{B^{\prime}} \operatorname{Hom}\left(V_{B}, V_{B}\right)_{B^{\prime}} \cong{ }_{B^{\prime}} A_{B^{\prime}}^{\prime} .
\end{aligned}
$$

Then, in the above isomorphisms, we will show that 1 of $\underset{\overrightarrow{D^{\prime}}}{\lim } \operatorname{Hom}\left(J_{B^{\prime}}^{\prime}, B_{B^{\prime}}^{\prime}\right)$ corresponds to 1 of A^{\prime}. Since V_{B} is finitely generated and projective, there exist
$\tau_{\mathrm{k}} \in \mathrm{V}$ and $\xi_{\mathrm{k}} \in \operatorname{Hom}\left(\mathrm{V}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}\right)$ such that for any $\mathrm{v} \in \mathrm{V}, \mathrm{v}=\sum \tau_{\mathrm{k}} \cdot \xi_{\mathrm{k}}(\mathrm{v})$. Then,

$$
\begin{aligned}
& {[1]=\left[\left(\mathrm{y} \rightarrow \sum_{\mathrm{i}, \mathrm{k}}\left[\tau_{\mathrm{k}} \cdot \xi_{\mathrm{k}}\left(\mathrm{v}_{\mathrm{j}}\right) \cdot \mathrm{x}_{\mathrm{j}}\right] \psi^{\prime}{ }_{\mathrm{j}}=\mathrm{y}\right)\right] \leftarrow \sum \tau_{\mathrm{k}} \otimes[1] \otimes \xi_{\mathrm{k}}} \\
& \rightarrow \sum \tau_{\mathrm{k}} \otimes 1 \otimes \xi_{\mathrm{k}}=\sum\left(\tau_{\mathrm{k}} \otimes 1\right) \otimes \xi_{\mathrm{k}} \\
& \rightarrow\left(\mathrm{v} \rightarrow \sum\left(\tau_{\mathrm{k}} \otimes 1\right) \cdot \xi_{\mathrm{k}}(\mathrm{v})=\sum \tau_{\mathrm{k}} \cdot \xi_{\mathrm{k}}(\mathrm{v}) \otimes 1=\mathrm{v} \otimes 1_{\mathrm{A}}=\phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right)\right) \\
& \leftarrow\left(\mathrm{v} \rightarrow \mathrm{a}^{\prime} \otimes \mathrm{v}\right) \leftarrow \mathrm{a}^{\prime} \otimes 1 \leftarrow \mathrm{a}^{\prime} .
\end{aligned}
$$

In this case, by Lemma 1 , for any $\mathrm{a} \in \mathrm{A}, \mathrm{v} \otimes \mathrm{a}=\left(\mathrm{v} \otimes 1_{\mathrm{A}}\right) \mathrm{a}=\phi^{\prime}\left(\mathrm{a}^{\prime} \otimes \mathrm{v}\right) \mathrm{a}=\mathrm{a}^{\prime} \phi^{\prime}\left(1_{\mathrm{A}^{\prime}} \otimes \mathrm{v}\right) \mathrm{a}=\mathrm{a}^{\prime}\left(\mathrm{v} \otimes 1_{\mathrm{A}}\right) \mathrm{a}$ $=\mathrm{a}^{\prime}(\mathrm{v} \otimes \mathrm{a})$. Hence $\mathrm{a}^{\prime}=1$. That is, the isomorhism $\underset{\overrightarrow{\mathrm{D}^{\prime}}}{\lim } \operatorname{Hom}\left(\mathrm{J}_{B^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)_{\mathrm{B}^{\prime}} \rightarrow \mathrm{A}^{\prime}$ is an isomorphism as rings.

The fact that ${ }_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}$ is flat follows from Proposition 8 and Proposition 5.

Proposition 11. In Theorem 10, we have
$\left\{\mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \mid \mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \cong \mathrm{M} \otimes_{\mathrm{B}} \mathrm{V}^{*}{ }_{\mathrm{B}^{\prime}}\right.$ for some M_{B} such that $\left.\mathrm{M} \otimes_{\mathrm{B}} \mathrm{A}=0\right\}=\left\{\mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \mid \mathrm{M}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}=0\right\}$.
Proof. Let $M \otimes_{B} A=0$. Since ${ }_{B^{\prime}} V$ and U_{A} are finitely generared and projective, by Lemma 4 (2), $M \otimes_{B} V^{*}{ }_{B^{\prime}} \otimes_{B^{\prime}} A^{\prime} \cong M \otimes_{B} \operatorname{Hom}\left(B_{B^{\prime}} V_{B^{\prime}} B^{\prime}\right) \otimes_{B^{\prime}} A^{\prime} \cong M \otimes_{B} \operatorname{Hom}\left(B_{B^{\prime}} V,{ }_{B^{\prime}} A^{\prime}\right) \cong M \otimes_{B} U^{*} \cong M \otimes_{B} \operatorname{Hom}\left(U_{A}, A_{A}\right)$ $\cong \operatorname{Hom}\left(\mathrm{U}_{\mathrm{A}}, \mathrm{M} \otimes_{\mathrm{B}} \mathrm{A}_{\mathrm{A}}\right)=0$.
Convesely, let $\mathrm{M}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}=0$ and put $\mathrm{M}_{\mathrm{B}}=\mathrm{M}^{\prime} \otimes_{B^{\prime}} \mathrm{V}_{\mathrm{B}}$. Then, we have $\mathrm{M} \otimes_{\mathrm{B}} \mathrm{A}=\mathrm{M}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{V} \otimes_{\mathrm{B}} \mathrm{A}$ $\cong M^{\prime} \otimes_{B^{\prime}} U \cong M^{\prime} \otimes_{B^{\prime}} A^{\prime} \otimes_{A^{\prime}} U=0$ and $M^{\prime} \otimes_{B^{\prime}} V \otimes_{B} V^{*}{ }_{B^{\prime}} \cong M_{B^{\prime}}^{\prime}$.
${ }^{(*)}$ In this case, $\boldsymbol{T}=\left\{\mathrm{M}_{\mathrm{B}} \mid \mathrm{M} \otimes_{\mathrm{B}} \mathrm{A}=0\right\}$ is a hereditary torsin class,
$F=\left\{O_{B} \mid O_{B}\right.$ is a right ideal of B such that $\left.O_{A}=A\right\}$
$=\left\{O_{\mathrm{L}} \mid O_{\mathrm{B}}\right.$ is a right ideal of B such that $\mathrm{J} \subseteq \mathrm{O}_{\mathrm{l}}$ for some $\left.\mathrm{J} \in \mathrm{D}\right\}$
is a topology and $\mathrm{A} \cong \underset{\vec{F}}{\lim } \operatorname{Hom}\left(0 \operatorname{LL}_{\mathrm{B}}, \mathrm{B}_{\mathrm{B}}\right)([8]$, p.78).
Moreover, $\boldsymbol{T}^{\prime}=\left\{\mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \mid \mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \cong \mathrm{M} \otimes_{\mathrm{B}} \mathrm{V}^{*}{ }_{\mathrm{B}^{\prime}}\right.$ for some $\left.\mathrm{M}_{\mathrm{B}} \in \boldsymbol{T}\right\}$
$=\left\{\mathrm{M}_{\mathrm{B}^{\prime}}^{\prime} \mid \mathrm{M}^{\prime} \otimes_{\mathrm{B}^{\prime}} \mathrm{A}^{\prime}=0\right\}$
is a hereditary torsion class,
$F^{\prime}=\left\{O_{B^{\prime}}^{\prime} \mid O L_{B^{\prime}}^{\prime}\right.$ is a right ideal of B^{\prime} such that $\left.O^{\prime} A^{\prime}=A^{\prime}\right\}$
$=\left\{O_{B^{\prime}}^{\prime} \mid O_{B^{\prime}}^{\prime}\right.$ is a right ideal of B^{\prime} such that $\mathrm{J}^{\prime} \subseteq G^{\prime}$ for some $\left.\mathrm{J}^{\prime} \in D^{\prime}\right\}$
and $A^{\prime} \cong \underset{\vec{F}}{ } \underset{\overrightarrow{\boldsymbol{F}}}{\lim } \operatorname{Hom}\left(0 L^{\prime}{ }_{\mathrm{B}^{\prime}}^{\prime}, \mathrm{B}_{\mathrm{B}^{\prime}}^{\prime}\right)([4]$, p．663 $)$.

要 約

森田加群に関連して，ある種の商環の森田同値性について調べた。

references

［1］S．A．Amitsur：1972，On rings of quotients，Symposia Mathmatica．Vol．8，pp．149－164，Academic Press．
［2］G．Azumaya：1964，森田氏の定理をめぐって，第6回代数分科会シンポジウム報告集（ホモロジー代数と その応用），pp．1－7，（in Japanese）．
［3］R．R．Colby and E．A．Rutter，Jr：1971，Generalizations of QF－3 algebras，Trans．Amer．Math．Soc．Vol． 153，pp．371－386．
［4］R．S．Cunnigham，E．A．Rutter and D．K．Turnidge：1972，Rings of quotients of endomorphism rings of projective modules，Pacific J．Math．Vol．41，No．3，pp．647－668．
［5］S．Ikehata：1975／76，On Morita equivalence in ring extensions，Math．J．Okayama Univ．18，No1，pp．73－ 79.
［6］J．Lambek：1976，Lectures on Rings and Modules，CHELSEA．
［7］Y．Miyashita：1970，On Galois extentions and crossed products，J．Fac．Sci．Hokkaido Univ．Series I， XXI，No．2，pp．97－121．
［8］B．Stenström：1971，Rings and Modules of Quotients，Lecture Notes in Math．237，Springer－Verlag．

