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The emergence of antimicrobial resistance in Klebsiella spp., including resistance to

extended-spectrum cephalosporins (ESC) and fluoroquinolones, is of great concern in

both human and veterinary medicine. In this study, we investigated the prevalence of

antimicrobial resistance in a total of 103 Klebsiella spp. isolates, consisting of Klebsiella

pneumoniae complex (KP, n = 89) and K. oxytoca (KO, n = 14) from clinical

specimens of dogs and cats in Japan. Furthermore, we characterized the resistance

mechanisms, including extended-spectrum β-lactamase (ESBL), plasmid-mediated

AmpC β-lactamase (PABL), and plasmid-mediated quinolone resistance (PMQR); and

assessed genetic relatedness of ESC-resistant Klebsiella spp. strains by multilocus

sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Antimicrobial

susceptibility testing demonstrated that resistance rates to ampicillin, cephalothin,

enrofloxacin, ciprofloxacin, trimethoprim/sulfamethoxazole, cefotaxime, gentamicin,

tetracycline, chloramphenicol, amoxicillin-clavulanic acid, and cefmetazole were 98.1,

37.9, 37.9, 35.9, 35.0, 34.0, 31.1, 30.1, 28.2, 14.6, and 6.8%, respectively. Phenotypic

testing detected ESBLs and/or AmpC β-lactamases in 31 of 89 (34.8%) KP isolates, but

not in KO isolates. Resistances to 5 of the 12 antimicrobials tested, as well as the three

PMQRs [qnrB, qnrS, and aac(6′)-Ib-cr], were detected significantly more frequently in

ESBL-producing KP, than in non-ESBL-producing KP and KO. The most frequent ESBL

was CTX-M-15 (n = 13), followed by CTX-M-14 (n = 7), CTX-M-55 (n = 6), SHV-2
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(n = 5), CTX-M-2 (n = 2), and CTX-M-3 (n = 2). Based on the rpoB

phylogeny, all ESBL-producing strains were identified as K. pneumoniae, except for one

CTX-M-14-producing strain, which was identified as K. quasipneumoniae. All of AmpC

β-lactamase positive isolates (n = 6) harbored DHA-1, one of the PABLs. Based on

MLST and PFGE analysis, ST15 KP clones producing CTX-M-2, CTX-M-15, CTX-M-55,

and/or SHV-2, as well as KP clones of ST1844-CTX-M-55, ST655-CTX-M-14, and

ST307-CTX-M-15, were detected in one or several hospitals. Surprisingly, specific

clones were detected in different patients at an interval of many months. These results

suggest that multidrug-resistant ESBL-producing KP were clonally disseminated among

companion animals via not only direct but also indirect transmission. This is the first

report on large-scale monitoring of antimicrobial-resistant Klebsiella spp. isolates from

companion animals in Japan.

Keywords: Klebsiella spp., dogs, cats, extended-spectrum β-lactamases, multidrug resistance, clonal

dissemination

INTRODUCTION

Members of the genus Klebsiella, belonging to the
Enterobacteriaceae, are gram-negative bacilli that inhabit
freshwater environments including surface water, sewage and
soil, as well as the mucosal surfaces of mammals (Podschun
and Ullmann, 1998). Klebsiella pneumoniae is the most
medically-important species in the genus and is responsible,
together with K. oxytoca (KO), for nosocomial infections in
humans (Podschun and Ullmann, 1998). Strains classically
identified as K. pneumoniae have been previously subdivided
into phylogroups named KpI, KpII, and KpIII (Brisse et al.,
2014). Recently, it has been proposed that these phylogroups
be redesignated as distinct species, K. pneumoniae (KpI),
K. quasipneumoniae (KpII), and K. variicola (KpIII) (Holt
et al., 2015), which are collectively called K. pneumoniae
complex (KP). In companion animals, Klebsiella spp. have
been demonstrated to cause infections such as urinary tract
infections (Ling et al., 2001), pyometra (Stone et al., 1988),
upper respiratory infections (Adler et al., 2007), and septicemia
(Roberts et al., 2000).

The emergence of antimicrobial resistance in Klebsiella spp.
isolates is of great concern worldwide in humanmedicine (Lynch
et al., 2013). It increases the risk of antimicrobial treatment failure
not only in humans but also in companion animals. Similarly,
the emergence of antimicrobial-resistant bacteria in companion
animals may have important human public health consequences
if isolates are transmitted to humans by their pets (Guardabassi
et al., 2004; Lloyd, 2007). Understanding the prevalence of
antimicrobial resistance among Klebsiella spp. isolates is thus
important both from veterinary medicine and public health
perspectives.

Resistance to extended-spectrum cephalosporins (ESC) and
fluoroquinolones in gram-negative bacteria, including Klebsiella
spp., is of particular concern (Paterson, 2006). ESC resistance
is mainly associated with the production of plasmid-mediated
extended-spectrum β-lactamases (ESBLs), AmpC β-lactamases
(PABLs), and carbapenemases (Kenneth, 2010; Rubin and Pitout,
2014). Although fluoroquinolone resistance is mainly acquired

by modification of their target enzymes, it may also involve
acquisition of plasmid-mediated quinolone resistance (PMQR)
determinants (Fàbrega et al., 2005; Guillard et al., 2015). PMQRs
determine relatively small increases in quinolone resistance,
but these changes are sufficient to mediate natural selection of
mutants that have higher levels of resistance (Strahilevitz et al.,
2009). In recent years, these important resistance mechanisms in
Klebsiella spp. isolates from companion animals have been well
documented in several European countries, including Germany
(Stolle et al., 2013; Ewers et al., 2014), Italy (Donati et al., 2014),
France (Haenni et al., 2012; Poirel et al., 2013), Spain (Hidalgo
et al., 2013), and Switzerland (Wohlwend et al., 2015). However,
the status of emerging antimicrobial resistance in Klebsiella
spp. in companion animals remains unknown in many other
countries, including Japan.

The aim of the present study was to investigate the
prevalence of antimicrobial resistance, and provide molecular
characterization of ESC resistance and PMQRs in Klebsiella spp.
isolates from clinical specimens from dogs and cats visited to
different veterinary hospitals throughout Japan. A further aim
was to assess the epidemiological relatedness of ESC-resistant
Klebsiella spp. strains.

MATERIALS AND METHODS

Bacterial Isolates
A total of 103 Klebsiella spp. isolates, consisting of 89 KP and
14 KO, were obtained from clinical specimens collected from
dogs (n = 78) and cats (n = 25) that visited veterinary
hospitals between 2003 and 2015. These hospitals were located at
the following 15 prefectures in Japan: Hokkaido, Fukui, Gunma,
Ibaraki, Saitama, Tokyo, Chiba, Kanagawa, Nagano, Aichi,
Osaka, Hyogo, Tottori, Yamaguchi, and Fukuoka prefectures.
The specimens were isolated from various anatomical sites,
assessed as being sites of bacterial infection by clinical
veterinarians, including the urinary tract (n = 48), skin
(n = 11), genitals (n = 9), and respiratory organs (n =

9), ears (n = 7), and digestive organs (n = 6); as well
as pus from unspecified locations (n = 8), and body fluids
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including ascites (n = 4). One specimen was of unknown
anatomical origin. The details of Klebsiella spp. isolates used in
this study are shown in Supplementary Table 1. No information
was available regarding previous antimicrobial treatment of the
dogs and cats. This study was carried out in accordance with the
recommendations of Guidelines for Proper Conduct of Animal
Experiments, Science Council of Japan. All enrolled animals
received the best practice veterinary care, and the owners granted
informed consent. Bacterial identification was conducted by
growth status on CHROMagar orientation medium (Ohkusu,
2000), using the API 20E kit (SYSMEX bioMérieux Co., Ltd.,
Tokyo, Japan). Because KP and KO often present similar
biochemical patterns (Chander et al., 2011), the species-specific
PCR was further carried out for confirmation of bacterial species,
as previously reported (Chander et al., 2011). All confirmed
Klebsiella spp. isolates were stored at −80◦C in 10% skim
milk.

Antimicrobial Susceptibility Testing
Susceptibilities to ampicillin (AMP), amoxicillin-clavulanic
acid (ACV), cephalothin (CPL), cefmetazole (CMZ),
cefotaxime (CTX), meropenem (MPM), tetracycline
(TET), gentamicin (GEN), chloramphenicol (CHL),
trimethoprim/sulfamethoxazole (TMS), ciprofloxacin (CIP),
and enrofloxacin (ENR) were determined. Susceptibility testing
was conducted using the agar dilution method, according to the
Clinical and Laboratory Standards Institute (CLSI) guidelines
(CLSI, 2013a). The results obtained were interpreted as per
the criteria contained within CLSI guidelines (CLSI, 2013b,c).
Escherichia coli ATCC 25922 was used as a control strain.

ESC-resistant (i.e., CTX MIC ≥ 2µg/mL) strains were
screened for production of ESBLs and AmpC-type β-lactamases
using a commercial combination disk kit (MAST Diagnostics,
Co. Ltd., UK), which can separately detect the two type
of β-lactamases by comparing the inhibition zones of the
cefpodoxime (CPD) disk to the inhibition zones of each of the
CPD plus inhibitor (i.e., ESBL inhibitor, AmpC inhibitor, or
both) disks.

Detection of PMQR Genes
Genomic DNA from each of the isolates was prepared by
suspending several colonies in 0.5ml of water and boiling for
10min. These samples were used as templates for further genetic
analyses. All isolates were screened for eight PMQR genes [i.e.,
qnrA, qnrB, qnrC, qnrD, qnrS, qepA, aac(6′)-Ib-cr, and oqxAB
genes] using multiplex PCR (Ciesielczuk et al., 2013). Positive
genes were confirmed subsequently by single PCR. Randomly
selected PCR products of oqxAB and all of the products of
the other PMQRs were directionally sequenced with the same
primers, for confirmation.

Characterization of β-Lactamase Genes in
ESC-Resistant Klebsiella spp. Strains
All of the ESC-resistant strains were screened for class A
β-lactamase genes (i.e., blaTEM and blaSHV), which were
identified using PCR and DNA sequencing, as previously
reported (Kojima et al., 2005). In the isolates with ambiguous

sequences of blaSHV, indicating that they have both
chromosomal and plasmid blaSHV genes (Haanperä et al.,
2008), the two blaSHV genes were separately identified, as
previously described (Lee et al., 2006). In ESBL-positive
strains, the CTX-M-type β-lactamase genes were detected using
multiplex PCR (Xu et al., 2007); for the positive isolates, the
genes were amplified and sequenced to identify CTX-M subtypes
using group-specific PCR primers (Kojima et al., 2005; Shibata
et al., 2006). In AmpC-positive strains, PABL genes (i.e., ACC,
FOX, MOX, DHA, CIT, and EBC groups) were screened by
multiplex PCR (Pérez-Pérez and Hanson, 2002), amplified
and then bi-directionally sequenced using specific primers
(Yan et al., 2002).

Multilocus Sequence Typing and
Phylogenetic Analysis of ESC-Resistant
Klebsiella spp. Strains
For ESC-resistant KP strains, multilocus sequence typing (MLST)
with seven genes (i.e., gapA, infB, mdh, pgi, phoE, rpoB,
and tonB) was carried out according to the protocol on the
Institut Pasteur website (http://bigsdb.web.pasteur.fr/klebsiella/
klebsiella.html). New alleles and STs were submitted to the
MLST website and new ST numbers were assigned. eBURST v3
analysis (http://eburst.mlst.net/v3/instructions/) was performed
to identify clonal complexes (CCs), defined as groups of two
or more independent isolates sharing identical alleles at six or
more loci (Ewers et al., 2014). Following Breurec et al. (2013),
we further split the STs into clonal groups (CGs) mapping within
the large central CC.

In addition, the phylogenetic relationship of all ESC-resistant
strains was investigated based on the rpoB gene sequence (Brisse
et al., 2014).

Pulsed-Field Gel Electrophoresis of
ESBL-Producing Klebsiella spp. Strains
Pulsed-field gel electrophoresis (PFGE) was performed on
ESBL-producing KP (ESBL-KP) strains, as previously described
(Herschleb et al., 2007). DNA embedded in agarose was digested
with XbaI (Takara Bio, Inc., Japan) and then electrophoresed
using CHEF DRIII (Bio-Rad, Hercules, CA, USA). PFGE
profiles were digitized for analysis using BioNumerics software
(version 5.10; Applied Maths, TX, USA). All fragment sizes
within the gel were normalized using the molecular weight
method. A similarity matrix was calculated using the Dice
coefficient, and cluster analysis was performed using the
UPGMA algorithm. A cluster was defined based on a similarity
cut-off of 80% with 1.0% optimization and 1.0% band
tolerance.

Statistical Analysis
Prevalence of antimicrobial resistance and PMQR genes between
the three groups (i.e., ESBL-KP and non-ESBL-KP, and KO
strains) was compared using the Fisher’s exact test. A P value
lower than 0.05 was considered significant. The Bonferroni
correction for multiple comparisons was applied, lowering the
threshold for significance to a value of P ≤ 0.0167.
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RESULTS

Antimicrobial Susceptibilities of Klebsiella
spp. Isolates
The numbers of isolates with resistance to AMP, CPL, ENR,
CIP, TMS, CTX, GEN, TET, CHL, ACV, and CMZ were 101
(98.1%), 39 (37.9%), 39 (37.9%), 37 (35.9%), 36 (35.0%), 35
(34.0%), 32 (31.1%), 31 (30.1%), 29 (28.2%), 15 (14.6%), and
7 (6.8%), respectively, in 103 Klebsiella spp. clinical isolates
(Supplementary Table 1). All of the isolates tested had low MIC
for MEM (≤0.031 to 0.063µg/mL).

Based on MIC of CTX, ESC resistance was detected in 35 KP
isolates but not in KO isolates. The combination disk screening
test revealed that 31 of 35 (88.6%) ESC-resistant KP strains
produced ESBLs with or without AmpC β-lactamases, whereas
the remaining four isolates produced AmpC β-lactamases but not
ESBLs. Resistances against TET, GEN, TMS, CIP, and ENR, as
well as cephalosporins including CPL and CTX, were detected
significantly more frequently in ESBL-KP strains, than in non-
ESBL-KP and KO strains (P < 0.0167, Table 1).

Prevalence of PMQR Genes in Klebsiella

spp. Isolates
Of the eight PMQRs tested, qnrB, qnrS, aac(6′)-Ib-cr, and oqxAB
genes were detected in KP clinical isolates, whereas none of the
PMQR genes were detected in KO isolates (Table 2). The qnrB,
qnrS, and aac(6′)-Ib-cr genes were significantly more prevalent
in ESBL-KP strains than in non-ESBL-KP strains (respectively
29.0 vs. 5.2, 25.8 vs. 3.4, and 35.5 vs. 1.7%, P < 0.0167).
However, the oqxAB gene was detected in approximately 90% of
isolates of both ESBL-KP and non-ESBL-KP strains: there was
no significant difference in prevalence of the gene between the
strains (P > 0.05).

Prevalence of β-Lactamases among
ESC-Resistant Klebsiella spp. Strains
Table 3 shows the detailed characteristics of 35 ESC-resistant
clinical strains. Twenty-seven and four ESC-resistant strains
harbored one and two ESBL genes, respectively. Of the ESBL
genes detected in this study, CTX-M-15 was the most prevalent
(n = 13), followed by CTX-M-14 (n = 7), CTX-M-55 (n = 6),
SHV-2 (n = 5), CTX-M-2 (n = 2), and CTX-M-3 (n = 2).
All of the six AmpC-positive strains (n = 6), two of which were
also positive for ESBLs, harbored DHA-1, one of the PABLs. As
for β-lactamases other than ESBLs and PABLs, SHV-1 and TEM-
1 were prevalent (n = 24 and 13, respectively); other minor
β-lactamases including SHV-11, SHV-26, SHV-27, OKP-B, and
TEM-176 were also detected (n = 4, 2, 2, 1, and 1, respectively).
Three ESC-resistant strains harbored two types of SHV genes
(i.e., SHV-1 and SHV-2).

Phylogenetic Relationship of
ESC-Resistant Klebsiella spp. Strains
The rpoB sequences of 35 ESC-resistant KP clinical strains were
compared with those of seven type strains of Klebsiella genus
(Supplementary Figure 1). The sequence of rpoB allele 1, which
was identified in 29 strains, differed from those of the three
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TABLE 2 | Prevalence of eight PMQRs among Klebsiella spp. isolates from

dogs and cats in Japan.

PMQR

genes

K. pneumoniae complex K. oxytoca

(n = 14)

ESBL-negative (n = 58) ESBL-positive (n = 31)

qnrA 0 (0) 0 (0) 0 (0)

qnrB 3 (5.2) 9 (29.0)a 0 (0)

qnrC 0 (0) 0 (0) 0 (0)

qnrD 0 (0) 0 (0) 0 (0)

qnrS 2 (3.4) 8 (25.8)a 0 (0)

qepA 0 (0) 0 (0) 0 (0)

aac(6′)-

Ib-cr

1 (1.7) 11 (35.5)a 0 (0)

oqxAB 53 (91.4)b 28 (90.3)b 0 (0)

aSignificantly higher resistance rates than non-ESBL-producing K. pneumoniae complex

and K. oxytoca isolates (P < 0.0167).
bSignificantly higher resistance rates than K. oxytoca isolates (P < 0.0167).

type strains (K. pneumoniae subsp. pneumoniae ATCC 13883,
K. pneumoniae subsp. ozaenae ATCC 11296, and K. pneumoniae
sub sp. rhinoscleromatis CIP52-210) by 1 nucleotide (99.8%
similarity). The sequence of rpoB allele 4, which was identified
in four strains, was identical with those of K. pneumoniae subsp.
pneumoniae ATCC 13883 and K. pneumoniae subsp. ozaenae
ATCC 11296, whereas the rpoB sequence of the KL111 strain
(allele 7) differed from these two subspecies by 1 nucleotide
(99.8% similarity). The rpoB sequence of the KL33 strain (allele
13) was identical with that of K. quasipneumoniae subsp.
similipneumoniae 07A044T.

As the result of phylogenetic analysis, all ESC-resistant strains
fell within the K. pneumoniae cluster (KpI), except for the KL33
strain, which fell within the K. quasipneumoniae cluster (KpII).

MLST Typing of ESC-Resistant Klebsiella
spp. Strains
As shown in Table 3, 34 ESC-resistant K. pneumoniae clinical
isolates investigated by MLST were assigned to 13 Sequence
Types (STs): ST15 (allelic profile 1-1-1-1-1-1-1, n = 16), ST655
(1-1-1-1-1-1-23, n = 5), ST307 (4-1-2-52-1-1-7, n = 3), ST1844
(1-1-1-1-1-1-297, n = 2), ST34 (2-3-6-1-9-7-4, n = 1), ST37
(2-9-2-1-13-1-16, n = 1), ST147 (3-4-6-1-7-4-38, n = 1),
ST337 (2-1-11-1-1-1-13, n = 1), ST709 (1-1-1-1-1-1-4, n =

1), ST753 (14-1-2-1-135-4-12, n = 1), ST881 (2-68-1-1-10-4-
13, n = 1), and ST2173 (4-6-19-13-1-4-22, n = 1). Figure 1
illustrates a population snapshot by eBURST analysis for our
collection, against 2250 previously-reported STs obtained from
the MLST database (http://bigsdb.pasteur.fr/klebsiella/klebsiella.
html: accessed on 4 February 2016). Seven of the thirteen STs
generated in our collection were placed into CC37. In this CC,
ST15 and its single locus variants (SLVs, ST655 and ST1844) were
included in CG15; ST37 and ST709 were included in CG37 and
CG515, respectively. Of non-CC37 STs, ST34, ST147, and ST307
were defined as predicted founders of their respective CCs.

PFGE Analysis of ESBL-Producing
Klebsiella spp. Strains
In the PFGE analysis, ESBL-KP clinical strains formed five
distinct clusters (Figure 2). Cluster I consisted of ST15 strains
producing CTX-M-2, CTX-M-55, and/or SHV-2 obtained from
the same or different veterinary hospitals in Tokyo and the
neighboring prefectures (Supplementary Figure 2), except for
the KL38 strain. Clusters II and III contained two ST1844-CTX-
M-55 strains and four ST655-CTX-M-15 strains, respectively,
obtained from several hospitals located mainly in Tokyo
prefecture. Cluster IV consisted of eight ST15-CTX-M-15 strains
obtained from two hospitals located in Aichi prefecture. Cluster
V contained two ST307-CTX-M-15 strains obtained from
different prefectures. Clusters I, III, and IV each contained strains
detected at an interval of several months. The remaining strains
were independent of the clusters.

DISCUSSION

There have been few reports on the prevalence of antimicrobial
resistance in overall populations of Klebsiella spp. clinical isolates
from companion animals, although numerous investigations
focusing on the strains with resistance to cephalosporins and/or
fluoroquinolones have been carried out. This study demonstrated
that more than 30% of Klebsiella spp. isolates in our collection
exhibited resistance to CPL, CTX, TET, GEN, TMS, CIP, or ENR,
in addition to extremely high prevalence of AMP resistance,
possibly due to chromosomal β-lactamases (Hæggman et al.,
2004). On the other hand, all of the Klebsiella spp. isolates
exhibited low MICs against MEM (≤0.063µg/ml), which were
much lower than the screening cut-offs for the detection of
carbapenemases proposed by both CLSI (2013c) and European
Committee on Antimicrobial Susceptibility Testing (Hrabák
et al., 2014). The resistance rates in our collection were higher
than those of KP as human respiratory pathogen in Japan, in
which resistance rates against 35 of 36 tested antimicrobials
were less than 10% (Yanagihara et al., 2015). Likewise, lower
resistance rates (i.e., less than 20% in most tested antimicrobials)
were found in 17 German canine and feline Klebsiella spp.
isolates (Grobbel et al., 2007). We have previously found
similar inter-country differences in prevalence of antimicrobial
resistance in other pathogens from companion animals (Harada
et al., 2012a,b, 2014). Systematic inter-country evaluation of
Klebsiella spp. isolates from companion animals would provide a
better understanding of country-specific trends in antimicrobial
resistance.

We found higher prevalence of ESBLs in KP clinical isolates
(31/89, 34.8%), compared with those from companion animals
in Italy (15/70, 21.4%, Donati et al., 2014), and in Germany and
other European countries (84/1112, 7.6%, Ewers et al., 2014). In
addition, this carriage rate of ESBLs was extremely higher than
that in human isolates in Japan (8/484, 1.6%, Sato et al., 2015).
These data suggest that the risk of ESBL carriage is relatively
high in KP clinical isolates from companion animals in Japan.
In this study, ESBL-KP strains frequently exhibited resistance
against not only cephalosporins but also the other classes
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FIGURE 1 | Population snapshot by eBURST analysis for ESC-resistant K. pneumoniae strains against the entire K. pneumoniae MLST database. The

STs identified in this study are labeled with arrows. The names of the CCs are based on the ST assigned as the founder genotype. The relative size of the circles

indicates the prevalence of STs and lines between STs connect SLVs. The straggly CC in the center of the picture was further separated into CGs, characterized as

subsets of this complex (Breurec et al., 2013).

of antimicrobials. This finding indicates a strong inclination
toward multidrug resistance in ESBL-KP, similar to KP human
isolates (Hyle et al., 2005). This high prevalence of multidrug
resistance may contribute to the selection and persistence of
ESBL-KP in clinical settings (Coque et al., 2008), and should be
taken into account when treating companion animals with KP
infections. Genetic analysis of β-lactamases revealed extremely
high prevalence of CTX-M-type β-lactamases, especially CTX-
M-15, in ESC-resistant KP clinical strains, similar to previous
studies (Donati et al., 2014; Ewers et al., 2014). CTX-M-3 was also
identified in this study, which has been reported in KO isolates in
France (Ewers et al., 2014). As for ESBLs detected in KP human
strains in Japan, CTX-M-14 was predominant, whereas CTX-M-
15 was in the minority (Nagasaka et al., 2015). To the best of
our knowledge, CTX-M-2, CTX-M-14, and CTX-M-55 were first
detected in Klebsiella spp. isolates from companion animals.

As for β-lactamases other than ESBLs, all of the identified
AmpC-type β-lactamases were DHA-1 in ESC-resistant KP
clinical strains, in accordance with previous reports of KP isolates
from humans (Nagasaka et al., 2015). Likewise, Wohlwend et al.
(2015) have reported that DHA-1 is mainly responsible for ESC
resistance in KP isolates from companion animals in a veterinary
hospital in Switzerland. SHV-type β-lactamases, including one
kind of ESBL (i.e., SHV-2), were detected in nearly all of the

ESC-resistant KP strains. Furthermore, OKP-type β-lactamase,
closely related to SHV-type, was firstly identified in Klebsiella
spp. isolates from companion animals. The OKP-type enzymes
have been specifically found in the phylogenetic group KpII
of K. pneumoniae (Hæggman et al., 2004; Fevre et al., 2005),
namely, K. quasipneumoniae. In fact, the OKP-B-positive strain
(KL33) was identified as K. quasipneumoniae based on the rpoB
phylogeny. It might be necessary to investigate the significance
of K. quasipneumoniae as pathogen and antimicrobial resistance
reservoirs in companion animals in the future.

The MLST analysis revealed that ST15 was the most common
among ESBL-KP clinical strains from companion animals in
Japan. In particular, ST15 clone was identified more frequently
in cats than in dogs, in contrast to the other STs, indicating the
spread of ST15 clone among cats has a role in its prevalence.
Previous studies in Italy and France have found that ST101 and
ST274 clones were predominant in ESBL-KP from companion
animals (Poirel et al., 2013; Donati et al., 2014). These data
indicate that the predominant ST in ESBL-KP varies by country.
In this study, we found predominance of ST15-CTX-M-15,
a well-known international clone of KP (Ewers et al., 2014),
which was also detected in France (Haenni et al., 2012) and
Germany (Ewers et al., 2014). Based on the PFGE analysis,
this clone was disseminated among different patients visiting
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FIGURE 2 | PFGE profiles of 31 ESBL-producing Klebsiella spp. strains from dogs and cats in Japan. The numbers embedded in the phylogenetic tree

mean clusters. *The CG or CC of each ST is given in parenthesis. ST was not assigned to KL33 strain because this strain was identified as K. quasipneumoniae.

the same hospital (cluster IV). This result strongly suggests
nosocomial infections of ESBL-KP clone, and similar findings
have previously been reported (Haenni et al., 2012; Poirel et al.,
2013; Ewers et al., 2014). The PFGE analysis also identified the
other ST15 clone (cluster I). This clone consisted of strains that
produce various ESBLs and were obtained from several hospitals.
Thus, we identified not only intra- but also inter-hospital
dissemination of ST15 ESBL-KP clones among companion
animals. In addition to ST15 clone, we found that several ESBL-
KP clones are spread among different hospitals, most of which
were located in the same or neighboring prefecture. Surprisingly,
several clones were repeatedly identified at an interval of many
months, implying that ESBL-KP clones can be maintained
inside or outside of hospitals for a long period. Therefore, the
dissemination of ESBL-KP clones among companion animals
may occur not only via direct spread from animal to animal,
but also via indirect transmission from potential reservoirs
and sources in the environment, as often seen in human
medicine (Hendrik et al., 2015). Our data emphasizes the need
for infection control in hospitals and in the community to
prevent dissemination of ESBL-KP clones among companion
animals.

Nagasaka et al. (2015) carried out MLST analysis for ESC-
resistant KP strains from human patients in Japan. They reported
a high prevalence of CG11, CG17, and CG37 with a minority of
the other STs. In our collection, however, CG15, an international
clonal group (Breurec et al., 2013), was predominant. On other
hand, we confirmed the presence of several STs in common with
human isolates (i.e., ST37 and ST147) as a minor population.
These findings suggest that transmission of ESC-resistant KP
between companion animals and humans may occur but is
relatively uncommon in Japan. Poirel et al. (2013) have shown
that CTX-M-15 genes in KP isolates from companion animals
were located on a different plasmid from that of human isolates,
in France, and indicated that these KP isolates evolved separately
from the human reservoir. In contrast, the German study by
Ewers et al. (2014) indicated that ST15-CTX-M-15 KP strains
were shared by humans and animals. Hidalgo et al. (2013) firstly
identified IncR plasmids, which have often been associated with
human isolates, in KP isolates from dogs and cats. Further studies
would be needed to clarify whether animals can act as a reservoir
of antimicrobial-resistant KP, including ESBL-KP, for humans.

Of the detected PMQRs in this study, oqxAB is detected in
nearly all of KP clinical isolates but not in KO isolates. This result
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can be explained by the fact that the PMQR is a chromosomally-
encoded gene in KP (Yuan et al., 2012). As for other PMQRs,
aac(6′)-Ib-cr, qnrB, and qnrS were relatively prevalent in our
collection, and similar findings were confirmed in ESBL-KP
isolates from human in Japan (Nagasaka et al., 2015). In contrast,
the latter two PMQRs have hardly been detected in ESBL-KP
isolates from companion animals in European countries (Donati
et al., 2014; Ewers et al., 2014). These findings may suggest local
spread of PMQRs among companion animals and humans in
Japan. Furthermore, these PMQRs were more prevalent in ESBL-
KP strains than non-ESBL-KP and KO isolates. This implies
an epidemiological link between genes of PMQRs and ESBLs
(Cantón and Coque, 2006; Strahilevitz et al., 2009). Such a link
may explain the higher rates of fluoroquinolone resistance in
ESBL-KP clinical strains, compared with non-ESBL-KP strains,
as seen in this study.

In conclusion, we carried out the first large-scale monitoring
of antimicrobial resistance in Klebsiella spp. clinical isolates
from companion animals in Japan. Our data demonstrated a
high prevalence of multidrug-resistant ESBL-KP strains, most
of which harbored PMQRs. In addition, ESBL-KP strains were
predominantly identified as to the ST15-CTX-M-15 clone, and
scarcely contained human-related ST clone. Epidemiological
data may suggest that ESBL-KP isolates are disseminated
clonally, via intrahospital and interhospital transmission. Overall,
Klebsiella spp. isolates in our collection exhibited higher rates of
antimicrobial resistance and ESBL carriage than human clinical
isolates in Japan, but the similarity of STs and ESBL types
between isolates from human and companion animals were less
common. We strongly believe that ESBL-KP poses a serious
threat of antimicrobial resistance to companion animal medicine,
especially in Japan, although the public health risk of ESBL-KP
isolates from companion animals remains to be assessed.
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Supplementary Table 1 | The details of Klebsiella spp. isolates used in this

study. aAMP, ampicillin; ACV, amoxicillin-clavulanic acid; CPL, cephalothin; CMZ,

cefmetazole; CTX, cefotaxime; MPM, meropenem; TET, tetracycline; GEN,

gentamicin; CHL, chloramphenicol; TMS, trimethoprim/sulfamethoxazole; CIP,

ciprofloxacin; ENR, enrofloxacin. R, resistant.

Supplementary Figure 1 | Phylogenetic relationship based on the rpoB

gene sequence. The tree was obtained with the neighbor-joining method with

Kimura’s two-parameter distance. Strain name is indicated for each sequence.

The values at the nodes correspond to the bootstrap values obtained after 1000

replicates (Brisse et al., 2014).

Supplementary Figure 2 | Geographical distribution of 31 ESBL-producing

Klebsiella spp. strains detected in this study in Japan. Bold type denotes

prefecture names. The numbers of strains are shown in parentheses.
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