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ABBREVIATIONS 

Antimicrobials: 

 AMP: ampicillin 

OXA: oxacillin 

KAN: kanamycin 

GEN: gentamicin 

ERY: erythromycin 

CLI: clindamycin 

VAN: vancomycin 

CIP: ciprofloxacin 

TET: tetracycline 

MRSA: methicillin-resistant Staphylococcus aureus 

HA-MRSA: healthcare-associated methicillin-resistant Staphylococcus aureus 

CA-MRSA: community-associated methicillin-resistant Staphylococcus aureus 

LA-MRSA: livestock-associated methicillin-resistant Staphylococcus aureus 

MSSA: methicillin-susceptible Staphylococcus aureus  

MRCNS: methicillin-resistant coagulase negative staphylococci 

SCCmec: staphylococcal cassette chromosome mec 

MLST: multilocus sequence type  



CC: clonal complex 

CLSI: Clinical and Laboratory Standards Institute 

MIC: minimum inhibitory concentration 

MALDI-TOF MS: matrix-assisted laser desorption/ionization time-of –fright mass 

spectrometry 

POT: phage open reading frame typing 

PFGE: pulsed field gel electrophoresis 
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PREFACE 

 

Antimicrobial resistance is a looming public health crisis. While once believed to be 

the province of hospitals and other health-care facilities, a host of community factors are now 

known to promote antibiotic resistance, and community-associated resistant strains have now 

been implicated as the cause of many hospital-acquired infections [10, 66]. An inherent 

consequence of exposure to antibiotic compounds, antimicrobial resistance arises as a result 

of natural selection [2]. Due to normal genetic variation in bacterial populations, individual 

organisms may carry mutations that render antibiotics ineffective, conveying a survival 

advantage to the mutated strain. In the presence of antibiotics, advantageous mutations can 

also be transferred via plasmid exchange within the bacterial colony, resulting in proliferation 

of the resistance trait [14]. The emergence of antimicrobial resistance has been observed 

following the introduction of each new class of antibiotics, and the threat is compounded by a 

slow antimicrobial development pipeline and limited investment in the discovery and 

development of new antibiotic agents [60, 73, 76]. 

International, national, and local antibiotic stewardship campaigns have been 

developed to encourage prudent use of and limit unnecessary exposure to antibiotics, with the 

ultimate goal of preserving their effectiveness for serious and life-threatening infections [8] 

There is also considerable debate in veterinary medicine regarding use of antibiotics in 

animals raised for human consumption (livestock animals). The potential threat to human 

health resulting from inappropriate antibiotic use in livestock animals is significant, as 

pathogenic-resistant organisms propagated in these livestock are poised to enter the food 

supply and could be widely disseminated in food products [17, 28, 31, 42, 65]. Commensal 
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bacteria found in livestock are frequently present in fresh meat products and may serve as 

reservoirs for resistant genes that could potentially be transferred to pathogenic organisms in 

humans [20, 55]. I need coherent international action that spans antimiciobial regulation and 

antimicrobial use across humans and animals. 

Until the 1990s, methicillin-resistant Staphylococcus aureus (MRSA) was 

traditionally considered a pathogen causing nosocomial infections, being the so-called HA-

MRSA (healthcare-associated methicillin-resistant Staphylococcus aureus). However, over 

time, cases of MRSA-positive individuals were observed who never had contact with hospital 

services, and strains from these individuals were identified and named CA-MRSA 

(community-associated methicillin-resistant Staphylococcus aureus) [87]. In 2003 in the 

Netherlands, a new MRSA strain arose in patients that could not be typed through PFGE 

(pulsed field gel electrophoresis) with SmaI, with resistance to digestion by this enzyme [9], 

being called since then NT-MRSA (non typeable methicillin-resistant Staphylococcus 

aureus). Investigations of this NT-MRSA intensified, and it was observed that these patients 

carrying this strain had previous contact with pigs and the geographic distribution of cases 

showed clusters near pig farms [16]. With more advanced studies, it was possible to 

determine strains strictly related to animals, such as those found in pigs, which were named 

LA-MRSA (livestock-associated methicillin-resistant Staphylococcus aureus) in 2010 [80]. 

MRSA evolved from methicillin-susceptible S. aureus (MSSA) by acquisition of 

staphylococcal cassette chromosome mec (SCCmec) elements containing a mec gene (mecA, 

more rarely mecC), which codes for an additional penicillin binding protein that has low 

affinity for β-lactam antibiotics and therefore mediates resistance to nearly all compounds 

from this antibiotic class (besides ceftobiprole and ceftarolin) [63]. Methicillin-resistant 

coagulase negative staphylococci (MRCNS) are also commonly found in the nose of MRSA-
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positive patient, and there is indirect evidence that MRSA clones arose from genetic transfer 

of SCCmec from MRCNS to MSSA [86]. Therefore, it is thought that the expansion of 

MRCNS in humans and animals is the threat for public health like MRSA. 

LA-MRSA belonging to multilocus sequencing type (MLST) 398 (ST398) and related 

strains collectively grouped into clonal complex 398 (CC398) have been frequently found in 

pigs, chickens, veal calves, dairy cattle, horses, dogs, and milk in various countries. MSSA 

and MRSA have been associated with companion and livestock animals [4, 30, 52, 58, 85]. 

An examination of LA-MRSA in human case isolates in the Netherlands indicated an increase 

from 0% in 2002 to greater than 21% in mid-2006 [78] and 35% in 2009 [23]. In most 

European countries, CC398 remains the most commonly identified type of LA-MRSA [72]. 

However, the epidemiology of LA-MRSA differs in other geographic areas. A different strain 

of LA-MRSA, CC97 is also found associated with pig and cow carriage [26]. CC9 appears to 

be the prominent type in several Asian countries [48, 81]. Poultry may harbor CC398 strains 

[3] but CC5 [3] and other types unrelated to CC398 have also been reported [49]. Besides the 

importance of living animals as a source of MRSA, animal origin products also play a role in 

disseminating these strains to the humans. Previous studies reported that 3-32% of meat 

products were contaminated by MRSA [18], and characteristics of these isolates suggest that 

they can be of both animal and human origin, and although the presence of MRSA in food is 

low, it must be monitored, because it can contribute to its dissemination. 

In this thesis, I aimed to detect MRSA among livestock animals in Japan and 

characteristics of these isolates, and to verify the potential role of meat in MRSA 

transmission. First, I derived MRSA from pigs at a slaughterhouse in Ibaraki, one of the top 

pig-producing prefectures in eastern Japan according to the Ministry of Agriculture, Forestry 

and Fisheries (MAFF) survey (http://www.maff.go.jp) (Chapter 1). Next, to clarify the actual 
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state about MRSA and the risk that MRSA emerge among livestock animals in Japan, I 

attempted to isolate MRSA, MRCNS, and MSSA from pigs and cows at a slaughterhouse in 

Hokkaido (Chapter 2). Finally, I compare the characteristics of MRSA isolates from pigs, 

cows, meat, and humans to elucidate the relationship among these origins and to assess 

transmission from animals to human in Japan (Chapter 3). 
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CHAPTER 1 

 

Isolation of methicillin-resistant Staphylococcus aureus among pigs in Ibaraki, Japan 
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1.1.Introduction 

MRSA is an important nosocomial pathogen in humans. Indeed, MRSA can cause 

purulent skin and soft-tissue infections (SSTIs) in healthy individuals. In the last decade, 

MRSA has also been detected in livestock animals, termed LA-MRSA. Most of the isolates 

from European livestock have been typed using MLST and are designated as ST398 [16]. In 

contrast to European countries, in Asia MRSA ST9 has been reported as the prevalent clonal 

type in swine [16]. LA-MRSA is the primary cause of community-acquired SSTIs in people 

exposed to livestock animals [12]. MRSA is an important concern in the hospital setting and 

in the community as well as for consumers of animal food products worldwide. 

In Japan, there has only been a single report of the isolation of MRSA ST221 from a pig 

[7]. Since there have been few studies of MRSA in livestock animals in Japan, the present 

distribution of MRSA in these animals is unclear. The aim of this study was to determine the 

frequency and clonal types of MRSA among slaughter pigs in a top pig-producing area in 

Japan. 
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1.2.Materials and methods 

From February to March 2013, nasal swabs were collected from 100 apparently healthy 

pigs from 21 different farms (3–5 pigs per farm) at a slaughterhouse in Ibaraki. This 

slaughterhouse processes a maximum of 1600 pigs and 100 cows per day. Immediately after 

sampling, nasal swabs were incubated in 3 mL of tryptic soy broth (TSB) (Becton Dickinson 

Japan, Tokyo, Japan) containing 6.5% NaCl at 37 °C for 24 h. A loopful of TSB was then 

plated on CHROMagar™ MRSA (Kanto Chemical, Tokyo, Japan) and was incubated at 

35 °C for 24 h. Suspected MRSA colonies were transferred to trypticase soy agar (TSA) and 

were tested with catalase and Gram strain. Isolates were identified using API® Staph ID 32 

(SYSMEX bioMérieux Co. Ltd., Tokyo, Japan), and PCR was used to amplify the MSSA-

specific gene (femA) and methicillin resistance gene (mecA) [1]. Both femA- and mecA-

positive isolates were identified as MRSA (one per sample) and were analysed in further 

experiments. 

SCCmec typing [46], PCR for the Panton–Valentine leukocidin gene (pvl) [1], MLST [24] 

and spa typing [70]  were performed for all MRSA isolates according to previously published 

methods. The sequence type and spa types were determined using the MLST website 

(http://www.mlst.net) and Ridom database website (http://spa.ridom.de/spatypes.shtml), 

respectively. 

Antimicrobial susceptibility was determined by the agar dilution method following 

Clinical and Laboratory Standards Institute (CLSI) recommendations [82] for the following 

antibiotics: ampicillin (Sigma–Aldrich, St Louis, MO, USA), oxacillin, gentamicin, 

kanamycin, erythromycin, clindamycin, vancomycin, ciprofloxacin and tetracycline (Wako 

Pure Chemical Industries, Osaka, Japan). S. aureus ATCC 29213 and Enterococcus faecalis 
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ATCC 29212 served as quality control strains. The presence of erm(A), lnu(A) and lnu(B) 

was analysed by PCR as previously described [50, 74] and the amplification products were 

directly sequenced. Sequence data were analysed by NCBI BLASTn search 

(http://www.ncbi.nlm.nih.gov/sutils/genom_table.cgi). 

 

1.3.Results 

Eight MRSA isolates (8%) were obtained from 100 nasal swabs of slaughter pigs; the 

percentage of MRSA-positive pig farms was 14% (3/21) (Table 1). Five isolates from the 

same farm belonged to ST97, identified as spa type t1236, and were typed as SCCmec V (mec 

class C and ccr type 5). Three isolates from two pig farms belonged to ST5 and were 

identified as spa type t002. However, the SCCmec type of these three isolates was not 

determined because although they harboured type mec class A, the ccr complex for ccr type 1, 

2, 3, 4 and 5 was not amplified by PCR. No pvl-positive MRSA isolates were detected. 

The MICs of MRSA isolates were then analyzed CLSI guidelines to categorize them as 

either susceptible, intermediate or resistant [82]. All MRSA isolates were resistant to 

tetracycline in addition to ampicillin and oxacillin. Seven isolates (88%) were resistant to 

clindamycin. The ST97 MRSA lineage was intermediate-resistant to ciprofloxacin and two of 

the five isolates were intermediate-resistant to gentamicin. The ST5 MRSA lineage was 

susceptible to ciprofloxacin and intermediate-resistant to kanamycin. All isolates were 

susceptible to vancomycin. The five ST97/spa t1236/SCCmec V MRSA isolates showed an 

unusual antimicrobial susceptibility profile (clindamycin-resistant/erythromycin-susceptible) 

and harboured the lnu(B) gene. No other erm(A)- and lnu(A)-positive isolates were detected. 
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 Table 1. Characteristics of methicillin-resistant Staphylococcus aureus isolated from pigs 

Abbreviations: MLST; multilocus sequence typing, SCCmec; staphylococcal cassette chromosome mec, MIC; minimum 

inhibitory concentration, AMP; ampicillin, OXA; oxacillin, KAN; kanamycin, GEN; gentamicin, ERY; erythromycin, CLI; 

clindamycin, VAN; vancomycin, CIP; ciprofloxacin, TET; tetracycline. 

aParenthesis is the break point recommended by the Clinical and Laboratory Standards Institute [82]. Black full, resistant; dark 

fill, intermediate resistant; white fill, susceptible.

Strain No. Farm 

Molecular type  MIC (µg/mL)a

MLST spa type SCCmec
AMP 

(0.5) 

OXA 

(0.5) 

KAN 

(64) 

GEN 

(16) 

ERY 

(8) 

CLI 

(4) 

VAN 

(32) 

CIP 

(4) 

TET 

(16) 

MR23 A ST97 t1236 V 32 >32 2 8 ≦0.125 8 1 2 >32 

MR24 A ST97 t1236 V 16 32 2 0.25 ≦0.125 8 1 2 >32 

MR25 A ST97 t1236 V 16 32 2 0.25 ≦0.125 8 1 2 >32 

MR26 A ST97 t1236 V 16 32 2 8 ≦0.125 8 1 2 >32 

MR27 A ST97 t1236 V 16 32 2 0.25 ≦0.125 8 1 2 >32 

MR30 B ST5 t002 Atypical 32 >32 32 0.5 32 >8 2 0.5 >32 

MR31 B ST5 t002 Atypical 16 32 32 0.5 32 >8 1 0.5 >32 

MR33 C ST5 t002 Atypical 32 32 32 0.5 0.25 0.5 1 0.5 >32 
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1.4.Discussion 

The observed prevalence of MRSA in pigs (8%) and pig farms (14%) was lower than the 

reported frequency among pigs in European countries (11–46%) and other Asian countries 

such as China (11.4%) [16]. Baba et al. reported a frequency of 0.9% MRSA among strains 

isolated from pigs on farms in East Japan [7]. The current study of pigs at a slaughterhouse in 

Ibaraki, which is a part of East Japan, showed a relatively higher frequency. Furthermore, the 

MRSA-positive farms exhibited a specific type of MRSA (ST97/spa t1236/SCCmec V or 

ST5/spa t002/atypical SCCmec). Indeed, the antimicrobial sensitivity pattern of the MRSA 

isolates from each farm was also the same. This fact indicates clonal spread within the pig 

population, similar to that reported in other parts of the world [16]. 

This study showed evidence for the existence of different lineage types of MRSA in pigs 

in Ibaraki: ST97/spa t1236/SCCmec V and ST5/spa t002/atypical SCCmec. SCCmec V is the 

type most frequently harboured by ST398 MRSA [79]. Although ST97 MRSA is a common 

pig-adapted clone in Europe [16] and ST97 MSSA has been isolated from bovine milk [36] 

and diseased pigs [5] in Japan, ST97 MRSA has never been isolated from animals in Japan. 

ST5/spa t002 is the specific genotype of the New York/Japan clone, mainly associated with 

nosocomial infection in human medicine [36]. ST5 of animal origin is commonly reported in 

poultry worldwide and in pigs in Europe. In Japan, ST5 MRSA from animals has been 

isolated from bovine milk, although it has never been reported to be isolated from pigs [5, 36, 

64]. 

MRSA isolated from animals tends to exhibit unusual antimicrobial susceptibility profiles, 

such as clindamycin resistance/erythromycin susceptibility [50]. Erythromycin and 

clindamycin belong to the macrolide, lincosamide and streptogramin (MLS) family because 
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they share a binding site [50]. MLS resistance in S. aureus is largely mediated by the erm 

genes, and resistance to clindamycin confers cross-resistance to erythromycin. In this study, 

the five ST97 MRSA isolates showed an unusual susceptibility profile (clindamycin-

resistant/erythromycin-susceptible) and all of them harboured the lnu(B) gene but not the 

erm(A) gene. Lnu(B) modifies a hydroxyl group of clindamycin and lincomycin at position 3 

[50]. In pig veterinary practice in Japan, lincosamides are estimated to be used a great deal 

more than erythromycin according to the report of the MAFF 

(http://www.maff.go.jp/nval/iyakutou/hanbaidaka/). Use of lincosamides in pig production 

may play a role in the selection of lincosamide-resistant MRSA and it could be the reason for 

this unusual antimicrobial susceptibility profile. 

 

1.5.Conclusion 

This study revealed the existence of ST97 and ST5 MRSA among slaughter pigs and is 

the first report of the isolation of ST97 MRSA from an animal in Japan, although the origin of 

this MRSA was unclear. MRSA isolated from pigs, unlike those isolated from humans, are 

frequently highly resistant to clindamycin and harbour the lnu(B) gene, similar to ST398 LA-

MRSA. The limitation of this study include small sample size and limited area, and further 

larger studies are required to confirm the prevalence of MRSA among livestock animals in 

Japan. 
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1.6.Summary of Chapter 1 

 

The objective of this study was to determine the frequency and clonal types of MRSA 

among slaughter pigs in a top pig-producing area in Japan. In total, 100 nasal swabs were 

collected from slaughterhouse pigs originating from 21 different farms. MRSA isolates were 

analysed by SCCmec typing, spa typing and MLST and were examined for susceptibility to 

nine antimicrobial agents (ampicillin, oxacillin, gentamicin, kanamycin, erythromycin, 

clindamycin, vancomycin, ciprofloxacin and tetracycline). MRSA isolates were obtained from 

eight swabs (8%), representing three pig farms (14%). Five of the isolates were classified as 

ST97/spa t1236/SCCmec V and three were classified as ST5/spa t002/atypical SCCmec type. 

All of the isolates were resistant to ampicillin, oxacillin and tetracycline, and seven isolates 

(88%) were resistant to clindamycin. The five ST97 MRSA isolates displayed an unusual 

phenotype (clindamycin-resistant/erythromycin-susceptible). In conclusion, this is the first 

report of a ST97 MRSA isolate in Japan. The overall prevalence of MRSA is low in pigs, 

although it appears to be adapting among pigs in Japan owing to the new ST97 and ST5 

MRSA strains. 
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CHAPTER 2 

 

Distribution of methicillin-resistant Staphylococcus aureus, methicillin-resistant 

coagulase negative staphylococci, and methicillin susceptible Staphylococcus aureus 

among pigs and cows in Hokkaido, Japan 
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2.1. Introduction  

 Globally MRSA, an important pathogen in humans and animals, is responsible for 

considerable mortality, morbidity, and health care expenditure in both hospitals and the 

community [79]. Methicillin resistance is associated with the presence of the mecA gene, 

which encodes an additional penicillin-binding protein (PBP2a or PBP2’). This protein has a 

lower affinity for all beta-lactam antibiotics [33]. The mecA gene is located on a mobile 

genetic element called SCCmec [39]. SCCmec is considered that horizontal transfer between 

staphylococci, like MSSA or MSCNS, and contribute to emerge MRSA or MRCNS [32]. 

In chapter 1, I revealed that prevalence of MRSA among pig in Ibaraki (8%) was 

lower than foreign countries. However, the sample size, animal species (only pig) and 

investigation area were limited, and the presence of MRSA in the other area and among 

livestock animals except pigs are unknown. Worldwide MRCNS have been isolated from a 

number of animals, such as pigs, horses, cows, dogs, and cats [29, 83, 84], and MRCNS acts 

as a reservoir of SCCmec. Although the presence of MRCNS and MSSA among livestock 

animals in Japan are unclear. The object of this study was to investigate the population of 

MRSA, MRCNS, and MSSA, and characterize the isolates among pigs and cows in 

Hokkaido, where is prosperous animal industry. 
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2.2. Materials and methods 

2.2.1. Sample collection and isolation of bacteria 

From February 2014 to September 2015, a total of 436 nasal swabs were collected 

from 217 pigs and 219 cows at a slaughterhouse in Hokkaido. Nasal swabs were incubated in 

3 mL TSB containing 6.5% NaCl immediately after sampling at 37°C for 48 h. A loopful of 

the TSB was then plated on Oxacillin Resistance Screening Agar Base (ORSAB; Oxoid 

Limited, Basingstoke, England) and Baird Parker agar (BP; Oxoid Limited, Basingstoke, 

England) for the isolation of methicillin resistant staphylococci and MSSA, respectively. 

Resulting blue colonies on ORSAB and black colonies with halos on BP agar (up to 3) were 

transferred to TSA and archived in TSB with 15% glycerol at –80°C. 

 

2.2.2. Identification 

All isolates were confirmed using Gram stain, the catalase test. Gram-positive cocci 

and catalase production isolates were identified by matrix-assisted laser desorption/ionization 

time-of –fright mass spectrometry (MALDI-TOF MS) analysis using the ethanol-formic acid 

extraction method. Species identification was considered valid when the matching score with 

reference spectra of the MALDI Biotyper system, version 3.1 database (Bruker Daltonique, 

Billerica, USA) was ≥2.0. 

All staphylococci isolates were performed PCR for the mecA gene, which encodes for 

methicillin resistance. All mecA-positive CNS were regarded as MRCNS. 
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2.2.3. SCCmec typing and detection of the Panton-valentine leukocidin gene. 

For MRCNS isolates, SCCmec typing was performed by amplification of the mec 

regions (classes A, B, and C) and the ccr regions (types 1, 2, 3, and 5) [46]. The carriage of 

lukF-PV and lukS-PV genes encoding PVL was examined by PCR as described previously 

[1] 

 

2.2.4. Identification of the clonal complex (CC) of MSSA by Phage Open Reading Frame 

Typing (POT). 

All MSSA isolates were investigation for the presence of 16 small genomic islets 

(SGIs) by PCR [75]. After the PCR, the 16 SGIs were scored in the order of islet numbers 

with a 1 (present) or 0 (absence). These scores were then converted to hexadecimal numbers 

with the internal bin2hex (number, places) function of Microsoft Excel and detected islet 

pattern (IP). The IPs were compared with already reported by Suzuki et al [75]., CC of MSSA 

isolates were identified. 

 

2.3. Results 

2.3.1. Prevalence of MRSA, MRCNS among pigs and cows, and SCCmec typing  

In total, 17 MRCNS isolates from 6% of pigs (13/217) and 102 MRCNS isolates from 

44% of cows (96/219) were identified. The most frequent MRCNS species were S. fleurettii 

(46%), S. sciuri (17%) and S. lentus (13%) in cows, and S. epidermidis (33%), S. warneri 

(28%) and S. sciuri (22%) in pigs. No MRSA were isolated from cows nor pigs. S. fleurettii 

(n=47) were excluded from SCCmec typing because of mecA of S. fleurettii has been reported 
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to be chromosomally encoded and only contains part of the class A mec gene complex; it is 

not associated with a SCCmec element. SCCmec type of MRCNS isolates except S. fleurettii 

(n=72) were identified on the basis of following combination mec gene complex (mec class A, 

B or C) and ccr gene complex (ccr type 1, 2, 3, or 5), a large proportion of MRCNS isolates 

were nontypable (53%, n=38), following SCCmec III (26%, n=19), IV (8%, n=6), II (7%, 

n=5), and V (6%, n=4). 

 

Table 2. Distribution of MRCNS and SCCmec typing derived from pigs and cows 

 No. of isolates (%) SCCmec type  

MRCNS isolates Pig Cow II III IV V NT 
Chromosome 

mecA  

S. sciuri 4 24% 17 17% 3 10 8 
S. epidermidis 5 29% 6 6% 1 1 4 5 
S. fleurettii 0 47 46%  47
S. lentus 0 13 13% 9 4 
S. saprophyticus 3 18% 2 2% 5 
S. vitulinus 1 6% 2 2% 1 2 
S. xylosus 2 12% 2 
S. chonii 2 12% 9 9% 11 
S. haemolyticus  1 1% 1 
S. warneri   5 5% 5   

Total of isolates 17  102 5 19 6 4 38 47
NT: nontypable 

 

2.3.2. Distribution and characteristics of MSSA among pigs and cows 

 MSSA were isolated from 21% of cows (45/219) and 70% of pigs (152/217). The CC 

for the MSSA isolates are shown in Table 3. 45 MSSA isolates from cows, 89% (n=40) were 

identified as IP 908C (CC97), 11% (n=5) were IP 0E12 and 0A0C that of CCs were unclear. 
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On the other hands, among 152 MSSA isolates from pigs, 36% (n=55) of S. aureus isolates 

from pigs were IP 9276 (CC9), 34% (n=51) were IP F90D (CC398), 13% (n=20) were IP9050 

(CC5), 9% (n=14) were IP 7DD1 (CC30) and 8% (n=12) of CCs were unclear (IP 2A4C, 

7FF7, FB7F and F90F). No same IP and CC S. aureus from cows and pigs was found. 

 

  No. of isolates 

CCa IP 
value 

Pig 
(n=152) 

Cow 
(n=45) 

5 9050 20 (13%)    
9 9276 55 (36%)    
30 7DD1 14 (9%)    
97 908C  40 (89%)    
398 F90D 51 (34%)    
Unclassified 0E12  4 (9%) 
 0A0C  1 (2%) 
 2A4C 2 (1%) 
 7FF7 2 (1%) 
 FB7F 4 (3%) 
 F90F 4 (3%) 

aThe clonal complex (CC) of all MRSA isolates were classified by phage ORF typing 

 

2.4. Discussion 

 This study showed that porcine MSSA isolates majority belonged to CC9 or CC398, 

and bovine MSSA belonged to CC97, respectively. In general, the distribution of MSSA 

clones per production type was in agreement with results of previous surveys, which have 

shown the presence of MSSA CC1, CC9, CC30 and CC398 in pigs [34], CC97, CC133 and 

CC705/151 in bovines [38]. MSSA CC398 isolates also have been reported occasionally in 

pigs from Japan, as well as at high carriage rate (16.8%) in pigs from China [11], although the 

Table 3.  CC of MSSA isolates derived from pigs and cows 
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study was targeted to diseased pigs and the distribution of MSSA in healthy animals was 

unclear. This study also found MRCNS were pervasive among healthy pigs and cows in 

Japan. It might be occurred that MSSA strains acquired SCCmec encoding mecA gene from 

MRCNS, and evolve MRSA. From these results, it is possible that the same type of LA-

MRSA spreading all over the world may emerge on farms. 

 MRCNS like as derived from pigs and cows in this study has been reported in several 

species of animals, and a prevalence as high as around 60% [51, 77, 88, 89], and MRCNS 

gained great attention as being one of the leading bacterial group associated with mastitis in 

cows and sheep and nosocomial infections in humans [47]. In this study, the diversity of 

MRCNS species and the SCCmec elements were found in isolates from healthy pigs and 

cows. It is suggested that these bacterial species to cause suppurative disease in these animals 

render them a potential threat to humans and constitutes a potential risk from the consumption 

of foods of animal origin. 

MRSA were not present among pigs and cows in Hokkaido despite our present study 

revealed that 8% of pigs in Ibaraki carried MRSA. It is reported that the prevalence of MRSA 

in human healthcare setting were dependent upon the various regions within countries [27, 

62]. Limited other investigations have been performed to elucidate factors possibly 

influencing LA-MRSA prevalence in pigs. In one study, different farm management systems 

showed significant differences in LA-MRSA prevalence; fattening farms were higher than 

farrow-to-finish farms [79]. In another study, LA-MRSA prevalence seemed to differ greatly 

when comparing among two closed farm systems; one production system was highly MRSA 

positive and the other system appeared MRSA negative [71]. Part of the sows of MRSA 

positive system had been imported from Canada, where pigs have been found to be affected 

by LA-MRSA [45]. Although the authors could not give epidemiological evidence, LA-
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MRSA was thus possibly brought into the positive farm via import of affected live swine or 

pork products [71]. At present, we didn’t have information about introduction of sows from 

foreign countries and farm management system, and we do not know why MRSA were 

recovered from only pigs in Ibaraki. More studies are required to reliably assess the influence 

of farm management and related aspects on LA-MRSA prevalence, these studies suggest an 

important role for national and international pig trading in the dissemination of LA-MRSA in 

livestock animals. 

 

2.5. Conclusion 

 The present study warned of possibility of the emergence of LA-MRSA in Japan, 

although the prevalence of MRSA among livestock animals is low at the present time. Further 

monitoring of MRSA, MRCNS, and MSSA in livestock animals is strongly required due to 

possible impact on public health. 
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2.6. Summary of Chapter 2 

 

 To investigate the prevalence of MRSA, MRCNS, and MSSA, and characterize the 

isolates among pigs and cows, we collected nasal swabs from 217 pigs and 219 cows at a 

slaughterhouse in Hokkaido. MRCNS were derived from 6% of pigs and 44% of cows, 

although no MRSA were isolated. Species of bacteria of MRCNS and SCCmec type had 

variety and accorded with previous reports in foreign countries. MSSA were derived from 

70% of pigs and 21% from cows, and isolates were classified into CC9 and CC398, and 

CC97, respectively; it is same genotypes as LA-MRSA spreading around the world. In 

conclusion, this study reported that presence of MRCNS and CC9, CC97, and CC398 MSSA 

in healthy pigs and cows, and warned of possibility of the emergence of LA-MRSA in Japan. 

Consequently, it is required monitoring MRSA in livestock animals to controlling infection. 
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CHAPTER 3 

Closely related methicillin-resistant Staphylococcus aureus isolates from retail meat, 

cows with mastitis, and humans in Japan 
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3.1. Introduction 

In Japan, MRSA has been detected in various food products, including chicken meat 

[43, 61], duck meat [61], meat products (the details regarding the type of meat product are 

unclear) [57], and bovine milk [36]. Furthermore, MRSA have been detected in livestock 

animals, including bovine mastitis [35] and nasal swabs of pigs [7, 68]. Although some 

MRSA related articles were reported in several origins (animals, meats, and humans), these 

MRSA isolates were not compared. Therefore, it has remained unsolved the relationship 

among these MRSA isolated from different origins. To elucidate the relationship among 

animal, meat, and human isolates, and to assess transmission from animals to humans in 

Japan, we investigated the characteristics of MRSA from retail meat, cows with mastitis, a 

common animal disease caused by MSSA, nasals of pigs (MRSA isolates recovered in 

Chapter 1) and humans.  

 

3.2. Materials and Methods 

3.2.1. Sample collection 

A total of 5,435 food samples were collected from 2008 to 2009, and eight MRSA 

were isolated from eight meat samples used in this study. Various types of food (e.g. fish, rice 

balls) were included in addition to meat in the 5,435 samples, although the number of meat 

samples was uncertain. Eight MRSA were isolated from retail meat which was purchased in 

Osaka (n = 5: two ground beef samples and one sample each of pork ribs, ground pork, and 

Taiwanese frozen duck loin) and Tokyo (n = 3: one sample each of pork ribs, ground beef, 

and chicken) from 2008 to 2009. All meat, with the exception of the Taiwanese frozen duck 

loin, was produced domestically. MRSA from meat was isolated using a 1:10 dilution 
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emulsion of the meat sample in sterile phosphate buffer saline. A total of 0.5 ml of the 

emulsion was added to 4.5 ml of TSB with 7.5% NaCl and incubated for 18 to 20 h at 37 °C. 

A loopful of enrichment broth was spread on Mannitol Salt Agar with Egg Yolk (MSEY; 

Eiken Chemical, Tokyo, Japan) and incubated for 48 h at 37 °C. The presumptive colonies of 

S. aureus (yellow colonies with halo) were streaked and purified onto TSA. Isolates from 

meat were confirmed to be S. aureus by using PS LATEX (Eiken Chemical). The PCR was 

performed to confirm of the presence of the mecA gene [1].  

Seven MRSA were isolated from seven cows with mastitis in 2011, all bred at the 

same private farm in Hokkaido. We isolated bacteria from the milk, which were taken from 

the breast, and identified MRSA to detect the pathogen of the mastitis by request from the 

owner. The owner of the farm consented to use of the isolates in this study anonymously, 

including non-disclosure of the city of the farm. We did not perform any animal experiments 

or field studies in this study. This study also did not involve endangered or protected species. 

Therefore, the special permission in the authorities for this investigation was not necessary. 

Milk samples were streaked onto MRSA screening agar (cefoxitin containing Mannitol Salt 

Agar with Egg Yolk (MS-CFX); Nissui Pharmaceutical, Tokyo, Japan) and overnight at 

37 °C. The presumptive colonies were further cultured onto TSA and repeatedly sub-cultured 

to get pure culture. Methicillin resistance was confirmed by testing for the presence of 

penicillin binding protein 2 (PBP2’) (MRSA-LA; Denka-Seiken, Tokyo, Japan). Eight MRSA 

recovered from pigs were isolated as described in Chapter 1. 

A total of 100 human MRSA isolates collected in Kitasato University Hospital from 

2014 to 2016 (46 HA-MRSA isolates and 54 CA-MRSA isolates) were obtained from the 

Infection Control Research Center, Kitasato University, Tokyo, Japan. All HA- and CA-

MRSA isolates were recovered from blood samples. Infections were classified as either HA- 
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or CA-MRSA according to origin of MRSA isolates and standard epidemiological definitions 

established by the U.S. Centers for Disease Control and Prevention [44]. MRSA isolates were 

classified as HA-MRSA if (i) they were isolated from a culture obtained 48 hours or more 

after a patient was hospitalized, (ii) the patient had a history of hospitalization, surgery, 

dialysis, or residence in a long-term care facility within 1 year before the MRSA culture date, 

(iii) the patient had an indwelling device at the time of culture, or (iv) the patient had a history 

of MRSA infection or colonization. All other MRSA isolates were considered CA-MRSA. 

We could not obtain information about the patients (age, symptoms, sex, and places of 

residence or infection) because of ethical constraints imposed by Kitasato University. 

All MRSA isolates were confirmed to be S. aureus by matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry using the Bruker MALDI Biotyper 

system with the ethanol-formic acid extraction method. All were subsequently confirmed as 

mecA-positive by PCR [1].  

 

3.2.2. Molecular typing  

For all MRSA isolates, SCCmec typing, phage open reading frame (ORF) typing and 

spa typing were performed as described in Chapter 1. For MRSA isolates identified as 

SCCmecIV, further PCR for detection of the CWASP/J gene (spj) was performed to identify 

subtype SCCmec IVl [41]. The Clonal complex (CC) of all MRSA isolates were classified by 

phage ORF typing according to the methods described in Chapter 1. 

Pulsed-field gel electrophoresis (PFGE) was performed for CC8 MRSA isolates with 

genetic DNA fragments generated using 30 U SmaI (TaKaRa, Otsu, Japan) as previously 

described [56]. Cluster analysis was performed with the software program BioNumerics v6 
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(Applied Maths, Sint-Martens-Latem, Belgium) using the Dice coefficient and the 

unweighted pair group method. MLST for retail meat, cows with mastitis, and CC8 human 

MRSA isolates was performed as described in Chapter 1. The founder and CC of each ST 

were determined using the enhanced version of Based Upon Related Sequence Types 

(eBURST) [25].  

 

3.2.3. Virulence gene analysis 

The presence of genes encoding six staphylococcal enterotoxins, SEA to SEE, which 

main source of food poisoning [54], in addition to SEL, which CA-MRSA/J carries in Japan 

frequently [41] (SEs: sea, seb, sec, sed, see, and sel), toxic shock syndrome toxin-1 (TSST-1: 

tst) [54], which cause of TSS, exfoliative toxin A (ETA: eta) and B (ETB: etb), which are 

implicated in the cause of staphylococcal scalded-skin syndrome [54], PVL (pvl), which is 

associated with increased disease severity and found in a high proportion of CA-MRSA 

strains [1], and ACME (acr) which is a striking feature of USA300 and plays an important 

role in its growth and survival [21] was determined by PCR using previously reported primers 

[1, 15, 21, 54]. 

 

3.2.4. Antimicrobial susceptibility testing 

Antimicrobial susceptibility was tested by the agar dilution method following Clinical 

and Laboratory Standards Institute (CLSI) recommendations [82] for the following 

antibiotics: ampicillin (AMP; Sigma-Aldrich, St. Louis, MO, USA), oxacillin (OXA; Sigma-

Aldrich), kanamycin (KAN; Sigma-Aldrich), gentamicin (GEN; Sigma-Aldrich), 

erythromycin (ERY; Sigma-Aldrich), clindamycin (CLI; Sigma-Aldrich), vancomycin (VAN; 
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Sigma-Aldrich), ciprofloxacin (CIP; Sigma-Aldrich), and tetracycline (TET; Wako Pure 

Chemical Industries, Osaka, Japan). S. aureus ATCC 29213 and E. faecalis ATCC 29212 

served as quality control strains. The breakpoints of these antimicrobial agents were 

determined according to CLSI interpretation criteria [82] using Muller-Hinton Agar (Oxoid). 

 

3.3. Results 

3.3.1 Molecular characterization of MRSA isolates from meat, cows with mastitis, and 

humans 

Characteristics of MRSA isolates in this study are summarized in Table 4. Among 

eight MRSA isolates from meat, two (one from ground pork and one from ground beef) were 

classified as ST8 (CC8)/t1767/SCCmec IVl, two (one from pork ribs and one from chicken) 

were ST8 (CC8)/t1767/SCCmec untypable (harbored ccr type 2, but multiplex PCR for mec 

class was not amplified), one from ground beef was ST8 (CC8)/t4133/SCCmec IVl, one from 

pork rib was ST88 (CC88)/t1028/SCCmec IV, one from ground beef was ST59 

(CC59)/t3385/SCCmec V, and one from Taiwanese frozen duck loin was 

ST573/t3525/SCCmec IV (Table 4). Eight MRSA isolates from nasal swabs of pigs were 

classified as CC5/SCCmec untypable (harbored mec class A, but multiplex PCR for ccr type 

was not amplified) and CC97/SCCmec V as described in Chapter 1. All seven MRSA isolates 

from cows with mastitis were classified as ST8 (CC8)/t1767/SCCmec IVl. Among MRSA 

isolates from humans, all 46 HA-MRSA isolates were classified as CC5/SCCmec II, and were 

divided into spa type t002 (n=30), t045 (=12), and t7455 (n=4). Fifty-four CA-MRSA isolates 

yielded 16 different spa types. These 16 spa types belonged to 6 different CCs: 14 of CC1 

(t1784: n=13, t2207: n=1); 7 of CC5 (t002: n=5, t045: n=1, and newly identified t17193: 
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n=1), 29 of CC8 (t008: n=2, t986: n=1, t1476: n=1, t1767: n=16, t1852: n=3, t 4133: n=1, 

t12760: n=1, and newly identified t17177: n=3 and t17194: n=1); one of each CC45 (t065), 

CC89 (t375), and CC509 (t375). The majority of CA-MRSA was CC8/t1767/SCCmec IVl 

(n=15), following CC1/t1784/SCCmec IV (n=12). SCCmec type of CC45 and CC89 were 

untypable (harbored mec class A, but multiplex PCR for ccr type was not amplified). CC of 

one CA-MRSA isolate, spa type t1767, was not able to be classified by phage ORF typing 

because its IP (04C6) was not reported previously. Accordingly, MLST was performed; 

however, ST was not able to identified because two of seven genes (aroE and glpF) could not 

amplify using primers described previously [24].
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Table 4. Molecular characterization of MRSA isolates from meat, pigs, cow mastitis, and humans (HA-MRSA and CA-MRSA) 

CCa SCCb

mec spa 

Origin Resistant isolates Pattern of virulence genes 

Meat 
(n=8) 

Pigs 
(n=8) 

Cow with 
mastitis 
(n=7) 

CA-
MRSA 
(n=54) 

HA-
MRSA 
(n=46) 

AMPf OXA KAN GEN ERY CLI VAN CIP TET  

1 IV t1784    13  13 13 1 1 13 0 0 13 0 sea (n=9), sea + see (n=3), negative (n=1) 

  t2207    1  1 1 0 0 1 0 0 1 0 negative 
5 II t002    4 30 34 34 32 26 34 33 0 34 27 seb (n=13), sec + sel + tst (n=11),  

sea + sec + sel + tst (n=2), sel + tst (n=1), sel (n=1), negative 
(n=6) 

 
 

t045    1 12 13 13 13 7 13 13 0 10 13 sec + sel + tst (n=10), seb + sec + sel + tst (n=2), 
 sea + sec + see + sel + tst (n=1) 

  t7455      4 4 4 4 3 4 4 0 4 4 sec + sel + tst (n=3), seb + sec + sel + tst (n=1) 
 IV t002    1 1 1 0 0 0 0 0 0 0 tst (n=1) 
  t17193    1  1 1 0 0 1 0 0 0 0 negative 

 UTd t002  3    3 3 0 0 2 2 0 0 3 negative 

8 IV t008    2  2 2 2 0 2 0 0 1 0 pvl + acr (n=2) 
  t986    1  1 1 1 1 1 0 0 1 0 negative 
  t1476    1  1 1 0 0 0 0 0 0 0 tst 
  t1767    1  1 1 0 0 0 0 0 0 0 sel + tst 
  t1852    3  3 3 3 3 0 0 0 3 0 negative (n=3) 
  t17194    1  1 1 0 0 1 0 0 1 0 negative 

IVl t1767 2  
(1 GB, 1 
GP)e 

 7 15  24 24 24 19 9 0 0 0 0 sec + sel + tst (n=23), negative (n=1) 

  t4133 1 (GB)   1  2 2 2 2 0 0 0 0 0 sec + sel + tst (n=1), negative (n=1) 
  t17177   3  3 3 3 3 0 0 0 0 0 sec + sel + tst (n=3) 

 V t12760   1  1 1 1 1 1 0 0 1 0 negative (n=1) 
 UTc t1767 2  

(1 PR, 1 C) 
     2 2 2 2 0 0 0 0 0 sec + sel + tst (n=2) 

45 UTd t065   1  1 1 0 0 0 0 0 0 0 negative 

59 V t3385 1 (GB)    1 1 0 0 0 0 0 0 0 sea + seb + sel 

88 IV t1028 1 (PR)      1 1 1 0 0 0 0 0 0 negative 

89 UTd t375   1  1 1 1 1 1 1 0 0 0 etb 

97 V t1236  5    5 5 0 0 0 5 0 0 5 negative 

509 II t375   1  1 1 1 1 1 1 0 0 0 negative 

573 IV t3525 1 (TD)    1 1 1 1 0 0 0 0 1 sec 

Unclassfied IV t1767   1  1 1 0 0 0 0 0 0 0 sed 
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a; The Clonal complex (CC) of all MRSA isolates were classified by phage ORF typing 

b; SCCmec types I to V were determined based on the mec complex class (mec classes A, B, 

and C) and the type of ccr (ccr 1, 2, 3, and 5) 

c; Untypable (ccr type 2 + mec-untypable) 

d; Untypable (ccr-untyable + mec class A) 

e; GB: ground beef, GP: ground pork, PR: pork ribs, C: chicken, TD: Taiwanese frozen duck 

loin 

f; AMP: ampicillin, OXA: oxacillin, KAN: kanamycin, GEN: gentamicin, ERY: 

erythromycin, CLI: clindamycin, VAN: vancomycin, CIP: ciprofloxacin, TET: tetracycline 

 

3.3.2 Toxin genes of MRSA isolates from meat, cows with mastitis, and humans 

The toxin genes detected in each MRSA isolate are summarized in Table 4. In total, 

88% (7/8) from meat, 100% (7/7) from cows with mastitis, 93% (43/46) HA-MRSA isolates, 

and 70% (38/54) of CA-MRSA isolates carried at least one toxin gene. None of the isolates 

from nasal of pigs harboured toxin genes. Among the fourteen CC1/SCCmec IV MRSA 

isolates, sea (n = 9) was most common, followed by sea + see (n = 3). Among the 51 

CC5/SCCmec II MRSA isolates, including 46 HA-MRSA and 5 CA-MRSA isolate, sec + sel 

+ tst (n = 24) was most common, followed by seb (n = 13), seb + sec + sel + tst (n = 3), sea 

+ sec + sel + tst (n = 2), sea + sec + see + sel + tst (n = 1), sel + tst (n = 1), and sel (n = 1). 

One CC5/SCCmec IV carried tst. Among the nine CC8/SCCmec IV MRSA isolates, pvl + acr 

(n = 2), sel + tst (n = 1), and tst (n = 1) were observed. Among the twenty-nine CC8/SCCmec 

IVl MRSA isolates, including three from meat, seven cows with mastitis, and nineteen from 
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humans, 97% (27/29) carried sec + sel + tst. Two CC8 SCCmec untypable isolates from pork 

ribs and chicken carried sec + sel + tst. One CC59/SCCmec V (isolated from ground beef) 

carried sea + seb + sel, one CC573/SCCmec IV (isolated from Taiwanese frozen duck) 

carried sec, and one CC unclassified/SCCmec IV (belonging to CA-MRSA) carried sed.  

 

3.3.3 Antimicrobial susceptibility  

All MRSA isolates in this study were resistant to β-lactams (AMP and OXA); 

however, they were susceptible to VAN. In addition, CC8/SCCmec IVl was resistant to KAN 

(29/29: 100%) and GEN (24/29: 83%). CC5/SCCmec II was resistant to all tested 

antimicrobial agents except for VAN. 

 

3.3.4 PFGE analysis and MLST of CC8 MRSA isolates 

PFGE analysis and MLST were performed to classify MRSA isolates according to CC8 

(n=41, determined by phage ORF typing), which was the common clone among retail meat 

(n=5), cows with mastitis (n=7), and CA-MRSA from humans (n=29) (Fig 1). CC8 isolates 

were classified into a total of three STs: ST8 (allelic profile 3-3-1-1-4-4-3), ST380 (3-3-61-

42-4-4-3), and ST1516 (3-3-1-42-4-4-3). Three CC8/SCCmec IVl MRSA isolates from meat 

(two from beef and one from pork), one from a cow with mastitis, and ten human CA-MRSA 

isolates showed 100% PFGE similarity. Similarly, two human CA-MRSA isolates and three 

from cow with mastitis showed 100% similarity with different origin. These were 

ST8/SCCmec IVl containing three spa types with similar repeat profiles (t1767: 11-19-12-21-

17-34-24-24-34-22-25, t4133: 11-12-21-17-34-24-24-34-22-25, and t17177: 11-19-12-21-17-

34-24-24-24-24-34-22-25).  
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Fig 1. Genetic relationships among CC8 MRSA isolates. 

UPGMA dendrogram showing genetic relatedness among representative CC8 MRSA isolates 

as determined by PFGE with SmaI. 

UT; ccr type 2 + mec-untypable 

 

Strain CC ST spa SCCmec Origin
CA1 8 8 t1767 IVl Human
CA12 8 8 t1767 IVl Human
CA15 8 8 t1767 IVl Human
CA2 8 8 t1767 IVl Human
CA21 8 8 t1767 IVl Human
CA23 8 8 t1767 IVl Human
CA34 8 8 t17177 IVl Human
CA40 8 8 t17177 IVl Human
CA43 8 8 t1767 IVl Human
CA50 8 8 t17177 IVl Human
OL6 8 8 t1767 IVl Cow mastitis
OM3 8 8 t4133 IVl Ground beef
OM4 8 8 t1767 IVl Ground beef
OM5 8 8 t1767 IVl Ground pork
CA9 8 8 t1767 IVl Human
OL2 8 8 t1767 IVl Cow mastitis
OL5 8 8 t1767 IVl Cow mastitis
OL3 8 8 t1767 IVl Cow mastitis
CA11 8 8 t1767 IVl Human
CA17 8 8 t4133 IVl Human
OL1 8 8 t1767 IVl Cow mastitis
OL4 8 8 t1767 IVl Cow mastitis
OL7 8 8 t1767 IVl Cow mastitis
CA24 8 8 t1476 IV Human
CA48 8 8 t1767 IVl Human
CA25 8 8 t17194 IV Human
TM1 8 8 t1767 UT Chicken
TM2 8 8 t1767 UT Pork ribs
CA14 8 8 t1767 IVl Human
CA26 8 8 t1767 IVl Human
CA6 8 8 t1767 IVl Human
CA45 8 8 t1767 IVl Human
CA49 8 8 t1767 IV Human
CA4 8 8 t008 IV Human
CA46 8 8 t008 IV Human
CA39 8 8 t1767 IVl Human
CA13 8 8 t986 IV Human
CA16 8 380 t1852 IV Human
CA31 8 380 t1852 IV Human
CA19 8 1516 t1852 IV Human
CA32 8 8 t12760 V Human

10
0

9080 80 90 10
0

10
0

9080 80 90 10
0Similarity(%)
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3.4. Discussion 

This study showed that three MRSA isolates from retail meat, one MRSA from a cow 

with mastitis, and ten CA-MRSA isolates were closely related according to spa type, and 

identical according to PFGE pattern, ST, and SCCmec, they all had the characteristics of 

ST8/SCCmec IVl. Our study is the first to detect the closel molecular epidemiological 

relationship of MRSA among retail meat, cows with mastitis, and CA-MRSA from humans in 

Japan. 

ST8 MRSA isolated in this study showed a similar genotype and antimicrobial 

susceptibility pattern to ST8 CA-MRSA/J in Japan, which has some different characteristics 

from foreign countries. In Japan, a ST8 CA-MRSA/J strain was described; ST8 CA-MRSA/J 

which can be characterized as carrying SCCmec IVl, spa type t1767, negative for PVL and 

ACME, positive for sec, sel, and tst, and resistant to gentamicin [41]. It is reported that 37.5% 

(18/48) of CA-MRSA from human were typed as ST8 CA-MRSA/J in Japan [41]. Gentamicin 

is used in an outpatient for the treatment of skin infections in Japan [40]. Therefore, antibiotic 

therapy based on antimicrobial susceptibility test is needed for skin infections caused by 

MRSA. ST8/SCCmec IVa, positive for PVL and ACME MRSA (USA300), is a predominant 

CA-MRSA genotype in the US and worldwide [19]. USA300 clones show resistance to many 

non-β-lactams (macrolides, fluoroquinolones, and tetracycline) in addition to β-lactams [19]. 

ST8 MRSA isolates used in this study showed the same genotype and antimicrobial profile, 

aminoglycosides resistance, as those of CA-MRSA/J. Although the geographical area where 

human MRSA was derived, as well as the sample size of meat and animals were all limited, 

this study revealed that ST8 CA-MRSA/J spreads not only to the human community setting, 

but also among meat and living livestock (cow), but not yet to the healthcare setting. 



34 
 

Four STs (ST8, ST59, ST88, and ST573) were identified in isolates from retail meat in 

this study. All of these STs are human-associated types: ST8 in the United States and 

worldwide [19], ST59 in Taiwan [19], ST88 in Africa and Asia [53], ST573 which is a rare 

clone found previously in Taiwan [33] and Australia [34]. Three of four STs (ST8, ST59, and 

ST88) were found primarily in human CA-MRSA in Japan [87]. MRSA isolates from retail 

chicken and duck meat in Japan were ST8/SCCmec IV, and regarded as CA-MRSA [61]. 

These observations suggest a relationship of MRSA between retail meats and humans. 

However, these four STs have not been reported in Japanese livestock animals, and the 

prevalence of MRSA is low (0.9%–8% [7, 68]) in Japanese livestock. Considering these 

reports, there is a strong possibility that MRSA isolates from meat in this study are 

contaminated from humans, although we cannot draw any definitive conclusions regarding 

the source of contaminated retail meat with MRSA. 

Among STs from retail meat, ST573 MRSA from Taiwanese duck loin was first 

isolated in Japan. ST573 is a rare clone, found previously in Taiwanese children (SCCmec V, 

0.3% (1/294)) [13], healthcare settings (SCCmec IV, 2.4% (5/206)) in Taiwan [69], and in 

community settings (SCCmec V, 0.05% (2/4,099)) in Australia [59]. There are several reports 

of pathogens associated with the import of food; an oxacillin-susceptible mecA-positive S. 

aureus (OS-MRSA), has never been isolated in Europe, was isolated from imported cheese. It 

might indicate that OS-MRSA may enter the EU via the import of food [67]. Although the 

source of ST573/SCCmec IV MRSA from Taiwanese frozen duck in this study is unclear, it 

might have been brought to Japan via imported meat from Taiwan, the only region where 

ST573 carrying SCCmec IV MRSA has been detected [69].  

Since S. aureus can produce enterotoxins, it also poses a threat to humans who ingest 

food contaminated with these toxins [37]. Staphylococcal food poisoning, characterized by 
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vomiting and diarrhea, is a leading cause of food-borne illness in Japan [6]. Food sources of S. 

aureus have expanded to include livestock animal products and low-fat milk [6]. Toxic shock 

syndrome (TSS), which can be life-threatening, is defined by clinical and laboratory evidence 

of fever, rash, desquamation, hypotension, and multiple organ failure caused not only by toxic 

shock syndrome toxin-1 (TSST-1), but also by enterotoxins [22]. In this study, 88% (7/8) of 

MRSA isolates from retail meat were positive for enterotoxin genes and tst, higher than 

previous study (28.6% [61]). In Japan, the contamination rate of MRSA in meat is low (0.45% 

to 1.5% [43, 61]), but MRSA isolates from retail meat frequently carry virulence genes, and 

the spread of MRSA can cause human disease via the handling of contaminated retail meat. 

 

3.5. Conclusion 

This study showed that ST8 CA-MRSA/J is detected in the community setting, 

including retail meat and cows, and suggested that there is the transmission route of ST8 CA-

MRSA/J among these sources. However, the direction of transfer of MRSA could not be 

established, and the results might not be reflective of Japan overall because the number of 

MRSA isolates from meat and animals was very low. Additional studies are needed to 

determine the origin of MRSA from retail meat, confirm the distribution of ST8 CA-MRSA/J 

in living animals, and assess the risk of the spread of MRSA to consumers and others who 

handle meat. 
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3.6. Summary of Chapter 3 

 

 Methicillin-resistant Staphylococcus aureus (MRSA) is a pervasive healthcare-

acquired (HA) pathogen with recent emergence as a community-acquired (CA) pathogen. To 

elucidate whether meat mediates MRSA transmission between animals and humans in Japan, 

this study examined MRSA isolates from retail meat (n = 8), cows with mastitis (n = 7), and 

humans (HA-MRSA = 50 and CA-MRSA = 50) by molecular typing, virulence gene 

analyses, and antimicrobial susceptibility testing. MRSA isolates from retail meat were 

classified into sequence type (ST) 8/spa type t1767 (n=4), ST8/t4133 (n=1), ST59/t3385 

(n=1), ST88/t375 (n=1), and ST509/t375 (n=1). All seven MRSA isolates from cow with 

mastitis were ST8/t1767. 50 HA-MRSA were clonal complex (CC) 5, divided into t002 

(n=33), t045 (n=13), and t7455 (n=4). 50 CA-MRSA were classified into 6 different CCs: 

CC1 (n = 14), CC5 (n = 3), CC8 (n = 29), CC45 (n = 1), CC89 (n = 1), CC509 (n = 1), and 

into 15 different spa types including newly identified t17177, t17193, and t17194. The 

majority were CC8/t1767 (n=16). CC of one CA-MRSA isolate (spa type t1767) was not 

classified. Among 41 CC8 MRSA (five from meat, seven from cow with mastitis, and 29 CA-

MRSA), 14 ST8/SCCmec IVl isolates (three from meat, one from a cow with mastitis, and 10 

CA-MRSA) had identical pulsed-field gel electrophoresis patterns and similar spa type 

(t1767, t4133, and t17177), and were typed as CA-MRSA/J (ST8/SCCmec IVl, positive for 

sec + sel + tst but negative for Panton–Valentine leukocidin and the arginine catabolic mobile 

element). These results suggest that there is transmission cycle of CA-MRSA/J among meat, 

cows, and humans in Japan, although it is unclear whether the origin is cow. 
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CONCLUSION 

 

 First, I derived MRSA from pigs at a slaughterhouse in Ibaraki, as described in 

Chapter 1. Eight of 100 pigs (8%) carried MRSA, and molecular epidemiology analysis 

revealed that two MRSA strains presented in Ibaraki: ST97/spa t1236/SCCmec V and 

ST5/spa t002/atypical SCCmec, and the antimicrobial susceptibility patterns and carrying 

antimicrobial resistance genes were close to LA-MRSA. Although it appears to be adapting 

among pigs in Japan owing to the new ST97 and ST5 MRSA strains, the overall prevalence of 

MRSA is low in pigs (8%). 

 Next, I attempted to isolate MRSA, MRCNS, and MSSA from pigs and cows to 

clarify the actual state about MRSA and the risk that MRSA emerge among livestock animals 

in Japan, as described in Chapter 2. I derived 6 - 44% of MRCNS from pigs and cows, 

although nor MRSA. MSSA were isolated from 70% of pigs and 21% of cows, and phage 

open reading flame typing revealed that the majority CC of MSSA were CC9, CC398 in pigs 

and CC97 in cows, same genotype as LA-MRSA. This study provided the population genetic 

structure of MRCNS and MSSA in livestock animals in Japan, which reflect the natural 

habitation of bacterial clones in the host species, and warned of possibility of the emergence 

of LA-MRSA. 

 Finally, I compare the characteristics of MRSA isolates from pigs, cows, meat, and 

humans to estimate the transmission route, as described in Chapter 3. Molecular 

characteristics revealed that closely ST8 CA-MRSA/J is detected in the community setting, 

including retail meat and cows, and suggested that there is the transmission cycle of ST8 CA-

MRSA/J among these sources, although it is unclear whether the origin is cow.  
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 In conclusion, I successfully provided new findings about the epidemiological 

information of MRSA, MRCNS and MSSA in Japan, and elucidated that related MRSA 

isolates from cows, meat, and humans. The public health relevance of MRSA in retail meat is 

entirely unclear. Although it is plausible that nasal MRSA colonization could occur if humans 

contaminate their hands by touching meat (or contaminated surfaces) then touching their nose 

before handwashing. I could present an essential requirement for efficient antibiotic resistant 

bacteria control measure to be implemented.  



39 
 

ACKNOWLEDGEMENT 

 I would like to express the deepest appreciation to Professor Hidetoshi Higuchi 

(Rakuno Gakuen University) as my advising teacher. He gives me constructive comments and 

warm encouragement. Great appreciation is extended for Dr. Katsuro Hagiwara, Dr. Ikuo 

Uchida, and Dr. Masaru Usui for reviewing my manuscript and I am gratefully indebted to 

him for very valuable comments on this thesis. I would like to express my sincere gratitude to 

my advisor Dr. Yutaka Tamura for the continuous support of my Ph. D study and related 

research, for his patience, motivation, and immense knowledge. His guidance helped me in all 

the time of research and writing of this thesis. I also would like to express my appreciation to 

the following members who supported me: Ms. Terumi Sugiyama (Ibaraki Prefectural North 

Hygiene Inspection) and Mr. Takumi Motoya (Ibaraki Prefectural Institute of Public Health) 

for technical support in the isolation of MRSA from pigs in Chapter 1; Ms. Noriko Konishi 

(Tokyo Metropolitan Institute of Public Health), Dr. Akemi Kai (Tokyo Medical University), 

Dr. Hidehito Matsui, and Dr. Hideaki Hanaki (Kitasato University) for providing us with 

MRSA isolates derived from meat and humans in Chapter 3. I also thank my fellow labmates 

for the stimulating discussions, for the sleepless nights we were working together before 

deadlines, and for all the fun we have had in the last four years. Finally, I wish to thank my 

parents for their encouragement and supporting me spiritually throughout my life. 

  



40 
 

REFERENCES 

1.  Al-Talib, H., Yean, C. Y., Al-Khateeb, A., Hassan, H., Singh, K.-K. B., Al-Jashamy, 

K., and Ravichandran, M. 2009. A pentaplex PCR assay for the rapid detection of 

methicillin-resistant Staphylococcus aureus and Panton-Valentine Leucocidin. BMC 

Microbiol. 9:113. 

2.  Aminov, R. I., and Mackie, R. I. 2007. Evolution and ecology of antibiotic resistance 

genes. FEMS Microbiol. Lett. 271:147–161. 

3.  Argudín, M. A., Cariou, N., Salandre, O., Le Guennec, J., Nemeghaire, S., and Butaye, 

P. 2013. Genotyping and antimicrobial resistance of Staphylococcus aureus isolates 

from diseased turkeys. Avian Pathol. 42:572–580. 

4.  Armand-Lefevre, L., Ruimy, R., and Andremont, A. 2005. Clonal comparison of 

Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. 

Emerg. Infect. Dis. 11:711–714. 

5.  Asai, T., Hiki, M., Baba, K., Usui, M., Ishihara, K., and Tamura, Y. 2012. Presence of 

Staphylococcus aureus ST398 and ST9 in swine in Japan. Jpn. J. Infect. Dis. 65:551–

552. 

6.  Asao, T., Kumeda, Y., Kawai, T., Shibata, T., Oda, H., Haruki, K., Nakazawa, H., and 

Kozaki, S. 2003. An extensive outbreak of staphylococcal food poisoning due to low-

fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered 

skim milk. Epidemiol. Infect. 130:S0950268802007951. 

7.  Baba, K., Ishihara, K., Ozawa, M., Tamura, Y., and Asai, T. 2010. Isolation of 

meticillin-resistant Staphylococcus aureus (MRSA) from swine in Japan. Int. J. 



41 
 

Antimicrob. Agents 36:352–354. 

8.  Belongia, E. A., Knobloch, M. J., Kieke, B. A., Davis, J. P., Janette, C., and Besser, R. 

E. 2005. Impact of statewide program to promote appropriate antimicrobial drug use. 

Emerg. Infect. Dis. 11:912–920. 

9.  Bens, C. C. P. M., Voss, A., and Klaassen, C. H. W. 2006. Presence of a novel DNA 

methylation enzyme in methicillin-resistant Staphylococcus aureus isolates associated 

with pig farming leads to uninterpretable results in standard pulsed-field gel 

electrophoresis analysis. J. Clin. Microbiol. 44:1875–1876. 

10.  Boyce, J. M. 2008. Community-associated methicillin-resistant Staphylococcus aureus 

as a cause of health care-associated infection. Clin. Infect. Dis. 46:795–798. 

11.  Butaye, P., Argudín, M. A., and Smith, T. C. 2016. Livestock-associated MRSA and its 

current evolution. Curr. Clin. Microbiol. Reports 3:19–31. 

12.  Buyukcangaz, E., Velasco, V., Sherwood, J. S., Stepan, R. M., Koslofsky, R. J., and 

Logue, C. M. 2013. Molecular typing of Staphylococcus aureus and methicillin-

resistant S. aureus (MRSA) isolated from animals and retail meat in North Dakota, 

United States. Foodborne Pathog. Dis. 10:608–617. 

13.  Chen, C.-J., Hsu, K.-H., Lin, T.-Y., Hwang, K.-P., Chen, P.-Y., and Huang, Y.-C. 

2011. Factors associated with nasal colonization of methicillin-resistant Staphylococcus 

aureus among healthy children in Taiwan. J. Clin. Microbiol. 49:131–137. 

14.  Courvalin, P. 2008. Predictable and unpredictable evolution of antibiotic resistance. J. 

Intern. Med. 264:4–16. 

15.  Cremonesi, P., Luzzana, M., Brasca, M., Morandi, S., Lodi, R., Vimercati, C., 



42 
 

Agnellini, D., Caramenti, G., Moroni, P., and Castiglioni, B. 2005. Development of a 

multiplex PCR assay for the identification of Staphylococcus aureus enterotoxigenic 

strains isolated from milk and dairy products. Mol. Cell. Probes 19:299–305. 

16.  Crombé, F., Argudín, M. A., Vanderhaeghen, W., Hermans, K., Haesebrouck, F., and 

Butaye, P. 2013. Transmission dynamics of methicillin-resistant Staphylococcus aureus 

in pigs. Front. Microbiol. 4:57. 

17.  Cui, S., Ge, B., Zheng, J., and Meng, J. 2005. Prevalence and antimicrobial resistance 

of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland 

retail stores. Appl. Environ. Microbiol. 71:4108–4111. 

18.  Cuny, C., Wieler, L., and Witte, W. 2015. Livestock-associated MRSA: the impact on 

humans. Antibiotics 4:521–543. 

19.  David, M. Z., and Daum, R. S. 2010. Community-associated methicillin-resistant 

Staphylococcus aureus: epidemiology and clinical consequences of an emerging 

epidemic. Clin. Microbiol. Rev. 23:616–687. 

20.  Diarrassouba, F., Diarra, M. S., Bach, S., Delaquis, P., Pritchard, J., Topp, E., and 

Skura, B. J. 2007. Antibiotic resistance and virulence genes in commensal Escherichia 

coli and Salmonella isolates from commercial broiler chicken farms. J. Food Prot. 

70:1316–1327. 

21.  Diep, B. A., Gill, S. R., Chang, R. F., Phan, T. H., Chen, J. H., Davidson, M. G., Lin, 

F., Lin, J., Carleton, H. A., Mongodin, E. F., Sensabaugh, G. F., and Perdreau-

remington, F. 2006. Complete genome sequence of USA300, an epidemic clone of 

community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. 



43 
 

22.  Dinges, M. M., Orwin, P. M., and Schlievert, P. M. 2000. Exotoxins of Staphylococcus 

aureus. Clin. Microbiol. Rev. 13:16–34. 

23.  Duquette, R. A., and Nuttall, T. J. 2004. Methicillin-resistant Staphylococcus aureus in 

dogs and cats: an emerging problem? J. Small Anim. Pract. 45:591–597. 

24.  Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J., and Spratt, B. G. 2000. 

Multilocus sequence typing for characterization of methicillin-resistant and methicillin-

susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38:1008–1015. 

25.  Feil, E. J., Li, B. C., Aanensen, D. M., Hanage, W. P., and Spratt, B. G. 2004. 

eBURST : inferring patterns of evolutionary descent among clusters of related bacterial 

genotypes from multilocus sequence typing data. J. Bacteriol. 186:1518–1530. 

26.  Feltrin, F., Alba, P., Kraushaar, B., Ianzano, A., Argudín, M. A., Di Matteo, P., 

Porrero, M. C., Aarestrup, F. M., Butaye, P., Franco, A., and Battisti, A. 2016. A 

livestock-associated, multidrug-resistant, methicillin-resistant Staphylococcus aureus 

clonal complex 97 lineage spreading in dairy cattle and pigs in Italy. Appl. Environ. 

Microbiol. 82:816–821. 

27.  Fridkin, S. K., Hageman, J. C., Morrison, M., Sanza, L. T., Como-Sabetti, K., Jernigan, 

J. A., Harriman, K., Harrison, L. H., Lynfield, R., Farley, M. M., and Active Bacterial 

Core Surveillance Program of the Emerging Infections Program Network. 2005. 

Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. 

Med. 352:1436–1444. 

28.  Garofalo, C., Vignaroli, C., Zandri, G., Aquilanti, L., Bordoni, D., Osimani, A., 

Clementi, F., and Biavasco, F. 2007. Direct detection of antibiotic resistance genes in 

specimens of chicken and pork meat. Int. J. Food Microbiol. 113:75–83. 



44 
 

29.  Garza-González, E., Morfín-Otero, R., Llaca-Díaz, J. M., and Rodriguez-Noriega, E. 

2010. Staphylococcal cassette chromosome mec (SCC mec) in methicillin-resistant 

coagulase-negative staphylococci. A review and the experience in a tertiary-care 

setting. Epidemiol. Infect. 138:645–654. 

30.  Graveland, H., Wagenaar, J. A., Heesterbeek, H., Mevius, D., van Duijkeren, E., and 

Heederik, D. 2010. Methicillin resistant Staphylococcus aureus ST398 in veal calf 

farming: human MRSA carriage related with animal antimicrobial usage and farm 

hygiene. PLoS One 5:e10990. 

31.  Gundogan, N., Citak, S., Yucel, N., and Devren, A. 2005. A note on the incidence and 

antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. 

Meat Sci. 69:807–810. 

32.  Hanssen, A.-M., and Ericson Sollid, J. U. 2006. SCCmec in staphylococci: genes on 

the move. FEMS Immunol. Med. Microbiol. 46:8–20. 

33.  Hartman, B., and Tomasz, A. 1981. Altered penicillin-binding proteins in methicillin-

resistant strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 19:726–

735. 

34.  Hasman, H., Moodley, A., Guardabassi, L., Stegger, M., Skov, R. L., and Aarestrup, F. 

M. 2010. spa type distribution in Staphylococcus aureus originating from pigs, cattle 

and poultry. Vet. Microbiol. 141:326–331. 

35.  Hata, E. 2016. Bovine mastitis outbreak in Japan caused by methicillin-resistant 

Staphylococcus aureus New York/Japan clone. J. Vet. Diagn. Invest. 28:291–298. 

36.  Hata, E., Katsuda, K., Kobayashi, H., Uchida, I., Tanaka, K., and Eguchi, M. 2010. 



45 
 

Genetic variation among Staphylococcus aureus strains from bovine milk and their 

relevance to methicillin-resistant isolates from humans. J. Clin. Microbiol. 48:2130–

2139. 

37.  Hennekinne, J.-A., De Buyser, M.-L., and Dragacci, S. 2012. Staphylococcus aureus 

and its food poisoning toxins: characterization and outbreak investigation. FEMS 

Microbiol. Rev. 36:815–836. 

38.  Holmes, M. A., and Zadoks, R. N. 2011. Methicillin resistant S. aureus in human and 

bovine mastitis. J. Mammary Gland Biol. Neoplasia 16:373–382. 

39.  Ito, T., Katayama, Y., and Hiramatsu, K. 1999. Cloning and nucleotide sequence 

determination of the entire mec DNA of pre-methicillin-resistant Staphylococcus 

aureus N315. Antimicrob. Agents Chemother. 43:1449–58. 

40.  Iwaki, M., Noguchi, N., Nakaminami, H., Sasatsu, M., and Ito, M. 2011. Antimicrobial 

activity and frequency of spontaneous gentamicin-resistant mutants in bacteria related 

skin infections. Yakugaku Zasshi 131:1653–1659. 

41.  Iwao, Y., Takano, T., Higuchi, W., and Yamamoto, T. 2012. A new staphylococcal 

cassette chromosome mec IV encoding a novel cell-wall-anchored surface protein in a 

major ST8 community-acquired methicillin-resistant Staphylococcus aureus clone in 

Japan. J. Infect. Chemother. 18:96–104. 

42.  Kim, S.-H., Wei, C.-I., Tzou, Y.-M., and An, H. 2005. Multidrug-resistant Klebsiella 

pneumoniae isolated from farm environments and retail products in Oklahoma. J. Food 

Prot. 68:2022–2029. 

43.  Kitai, S., Shimizu, A., Kawano, J., Sato, E., Nakano, C., Uji, T., and Kitagawa, H. 



46 
 

2005. Characterization of methicillin-resistant Staphylococcus aureus isolated from 

retail raw chicken meat in Japan. J. Vet. Med. Sci. 67:107–110. 

44.  Klevens, R. M., Morrison, M. A., Nadle, J., Petit, S., Gershman, K., Ray, S., Harrison, 

L. H., Lynfield, R., Dumyati, G., Townes, J. M., Craig, A. S., Zell, E. R., Fosheim, G. 

E., McDougal, L. K., Carey, R. B., Fridkin, S. K., and Active Bacterial Core 

surveillance (ABCs) MRSA Investigators. 2007. Invasive methicillin-resistant 

Staphylococcus aureus infections in the United States. JAMA 298:1763–1771. 

45.  Köck, R., Loth, B., Köksal, M., Schulte-Wülwer, J., Harlizius, J., and Friedrich, A. W. 

2012. Persistence of nasal colonization with livestock-associated methicillin-resistant 

Staphylococcus aureus in pig farmers after holidays from pig exposure. Appl. Environ. 

Microbiol. 78:4046–4047. 

46.  Kondo, Y., Ito, T., Ma, X. X., Watanabe, S., Kreiswirth, B. N., Etienne, J., and 

Hiramatsu, K. 2007. Combination of multiplex PCRs for staphylococcal cassette 

chromosome mec type assignment: rapid identification system for mec, ccr, and major 

differences in junkyard regions. Antimicrob. Agents Chemother. 51:264–274. 

47.  Kürekci, C. 2016. Short communication: Prevalence, antimicrobial resistance, and 

resistant traits of coagulase-negative staphylococci isolated from cheese samples in 

Turkey. J. Dairy Sci. 99:2675–2679. 

48.  Larsen, J., Imanishi, M., Hinjoy, S., Tharavichitkul, P., Duangsong, K., Davis, M. F., 

Nelson, K. E., Larsen, A. R., and Skov, R. L. 2012. Methicillin-resistant 

Staphylococcus aureus ST9 in pigs in Thailand. PLoS One 7:e31245. 

49.  Lowder, B. V., Guinane, C. M., Ben Zakour, N. L., Weinert, L. A., Conway-Morris, 

A., Cartwright, R. A., Simpson, A. J., Rambaut, A., Nubel, U., and Fitzgerald, J. R. 



47 
 

2009. Recent human-to-poultry host jump, adaptation, and pandemic spread of 

Staphylococcus aureus. Proc. Natl. Acad. Sci. 106:19545–19550. 

50.  Lozano, C., Aspiroz, C., Sáenz, Y., Ruiz-García, M., Royo-García, G., Gómez-Sanz, 

E., Ruiz-Larrea, F., Zarazaga, M., and Torres, C. 2012. Genetic environment and 

location of the lnu(A) and lnu(B) genes in methicillin-resistant Staphylococcus aureus 

and other staphylococci of animal and human origin. J. Antimicrob. Chemother. 

67:2804–2808. 

51.  Malik, S., Coombs, G. W., O’Brien, F. G., Peng, H., and Barton, M. D. 2006. 

Molecular typing of methicillin-resistant staphylococci isolated from cats and dogs. J. 

Antimicrob. Chemother. 58:428–431. 

52.  Marshall, B. M., and Levy, S. B. 2011. Food animals and antimicrobials: impacts on 

human health. Clin. Microbiol. Rev. 24:718–733. 

53.  Mediavilla, J. R., Chen, L., Mathema, B., and Kreiswirth, B. N. 2012. Global 

epidemiology of community-associated methicillin resistant Staphylococcus aureus 

(CA-MRSA). Curr. Opin. Microbiol. 15:588–595. 

54.  Mehrotra, M., Wang, G., and Johnson, W. M. 2000. Multiplex PCR for detection of 

genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome 

toxin 1, and methicillin resistance. J. Clin. Microbiol. 38:1032–1035. 

55.  Mena, C., Rodrigues, D., Silva, J., Gibbs, P., and Teixeira, P. 2008. Occurrence, 

identification, and characterization of Campylobacter species isolated from portuguese 

poultry samples collected from retail establishments. Poult. Sci. 87:187–190. 

56.  Mulvey, M. R., Chui, L., Ismail, J., Louie, L., Murphy, C., Chang, N., Alfa, M., and 



48 
 

Canadian Committee for the Standardization of Molecular Methods. 2001. 

Development of a Canadian standardized protocol for subtyping methicillin-resistant 

Staphylococcus aureus using pulsed-field gel electrophoresis. J. Clin. Microbiol. 

39:3481–3485. 

57.  Murakami, K., Ishibashi, W., and Wada, T. 2002. Detection of methicillin-resistant 

Staphylococcus aureus (MRSA) from foodstuffs, roods and cooking facilities. 

Japanese J. Food Microbiol. 19:127–131. 

58.  Nemati, M., Hermans, K., Lipinska, U., Denis, O., Deplano, A., Struelens, M., 

Devriese, L. A., Pasmans, F., and Haesebrouck, F. 2008. Antimicrobial resistance of 

old and recent Staphylococcus aureus isolates from poultry: first detection of livestock-

associated methicillin-resistant strain ST398. Antimicrob. Agents Chemother. 52:3817–

3819. 

59.  Nimmo, G. R., and Coombs, G. W. 2008. Community-associated methicillin-resistant 

Staphylococcus aureus (MRSA) in Australia. Int. J. Antimicrob. Agents 31:401–410. 

60.  Norrby, S. R., Nord, C. E., Finch, R., and European Society of Clinical Microbiology 

and Infectious Diseases. 2005. Lack of development of new antimicrobial drugs: a 

potential serious threat to public health. Lancet. Infect. Dis. 5:115–119. 

61.  Ogata, K., Narimatsu, H., Suzuki, M., Higuchi, W., Yamamoto, T., and Taniguchi, H. 

2012. Commercially distributed meat as a potential vehicle for community-acquired 

methicillin-resistant Staphylococcus aureus. Appl. Environ. Microbiol. 78:2797–2802. 

62.  Olearo, F., Albrich, W. C., Vernaz, N., Harbarth, S., Kronenberg, A., and Swiss Centre 

For Antibiotic Resistance Anresis. 2016. Staphylococcus aureus and methicillin 

resistance in Switzerland: regional differences and trends from 2004 to 2014. Swiss 



49 
 

Med. Wkly. 146:w14339. 

63.  Palavecino, E. L. 2014. Clinical, epidemiologic, and laboratory aspects of methicillin-

resistant Staphylococcus aureus infections. Methods Mol. Biol. 1085:1–24. 

64.  Pantosti, A. 2012. Methicillin-resistant Staphylococcus aureus associated with animals 

and its relevance to human health. Front. Microbiol. 3:127. 

65.  Parveen, S., Taabodi, M., Schwarz, J. G., Oscar, T. P., Harter-Dennis, J., and White, D. 

G. 2007. Prevalence and antimicrobial resistance of Salmonella recovered from 

processed poultry. J. Food Prot. 70:2466–2472. 

66.  Popovich, K. J., and Weinstein, R. A. 2009. Commentary: The graying of methicillin-

resistant Staphylococcus aureus. Infect. Control Hosp. Epidemiol. 30:9–12. 

67.  Rodríguez-Lázaro, D., Oniciuc, E.-A., García, P. G., Gallego, D., Fernández-Natal, I., 

Dominguez-Gil, M., Eiros-Bouza, J. M., Wagner, M., Nicolau, A. I., and Hernández, 

M. 2017. Detection and characterization of Staphylococcus aureus and methicillin-

resistant S. aureus in foods confiscated in EU borders. Front. Microbiol. 8. 

68.  Sato, T., Usui, M., Motoya, T., Sugiyama, T., and Tamura, Y. 2015. Characterisation 

of meticillin-resistant Staphylococcus aureus ST97 and ST5 isolated from pigs in 

Japan. J. Glob. Antimicrob. Resist. 3:283–285. 

69.  Sheng, W.-H., Wang, J.-T., Lauderdale, T.-L., Weng, C.-M., Chen, D., and Chang, S.-

C. 2009. Epidemiology and susceptibilities of methicillin-resistant Staphylococcus 

aureus in Taiwan: emphasis on chlorhexidine susceptibility. Diagn. Microbiol. Infect. 

Dis. 63:309–313. 

70.  Shopsin, B., Gomez, M., Montgomery, S. O., Smith, D. H., Waddington, M., Dodge, 



50 
 

D. E., Bost, D. A., Riehman, M., Naidich, S., and Kreiswirth, B. N. 1999. Evaluation of 

protein A gene polymorphic region DNA sequencing for typing of Staphylococcus 

aureus strains. J. Clin. Microbiol. 37:3556–3563. 

71.  Smith, T. C., Male, M. J., Harper, A. L., Kroeger, J. S., Tinkler, G. P., Moritz, E. D., 

Capuano, A. W., Herwaldt, L. a, and Diekema, D. J. 2009. Methicillin-resistant 

Staphylococcus aureus (MRSA) strain ST398 is present in midwestern U.S. swine and 

swine workers. PLoS One 4:e4258. 

72.  Smith, T. C., and Pearson, N. 2011. The emergence of Staphylococcus aureus ST398. 

Vector Borne Zoonotic Dis. 11:327–339. 

73.  Spellberg, B., Powers, J. H., Brass, E. P., Miller, L. G., and Edwards, J. E. 2004. 

Trends in antimicrobial drug development: implications for the future. Clin. Infect. Dis. 

38:1279–1286. 

74.  Sutcliffe, J., Grebe, T., Tait-Kamradt, A., and Wondrack, L. 1996. Detection of 

erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 40:2562–

2566. 

75.  Suzuki, M., Matsumoto, M., Takahashi, M., Hayakawa, Y., and Minagawa, H. 2009. 

Identification of the clonal complexes of Staphylococcus aureus strains by 

determination of the conservation patterns of small genomic islets. J. Appl. Microbiol. 

107:1367–1374. 

76.  Talbot, G. H., Bradley, J., Edwards, J. E., Gilbert, D., Scheld, M., Bartlett, J. G., and 

Antimicrobial Availability Task Force of the Infectious Diseases Society of America. 

2006. Bad bugs need drugs: an update on the development pipeline from the 

Antimicrobial availability task force of the infectious diseases society of America. Clin. 



51 
 

Infect. Dis. 42:657–668. 

77.  van Duijkeren, E., Box, A. T. A., Heck, M. E. O. C., Wannet, W. J. B., and Fluit, A. C. 

2004. Methicillin-resistant staphylococci isolated from animals. Vet. Microbiol. 

103:91–97. 

78.  van Loo, I., Huijsdens, X., Tiemersma, E., de Neeling, A., van de Sande-Bruinsma, N., 

Beaujean, D., Voss, A., and Kluytmans, J. 2007. Emergence of methicillin-resistant 

Staphylococcus aureus of animal origin in humans. Emerg. Infect. Dis. 13:1834–1839. 

79.  Vanderhaeghen, W., Hermans, K., Haesebrouck, F., and Butaye, P. 2010. Methicillin-

resistant Staphylococcus aureus (MRSA) in food production animals. Epidemiol. 

Infect. 138:606–625. 

80.  Vanderhaeghen, W., Cerpentier, T., Adriaensen, C., Vicca, J., Hermans, K., and 

Butaye, P. 2010. Methicillin-resistant Staphylococcus aureus (MRSA) ST398 

associated with clinical and subclinical mastitis in Belgian cows. Vet. Microbiol. 

Elsevier B.V. 144:166–171. 

81.  Wagenaar, J. A., Yue, H., Pritchard, J., Broekhuizen-Stins, M., Huijsdens, X., Mevius, 

D. J., Bosch, T., and Van Duijkeren, E. 2009. Unexpected sequence types in livestock 

associated methicillin-resistant Staphylococcus aureus (MRSA): MRSA ST9 and a 

single locus variant of ST9 in pig farming in China. Vet. Microbiol. 139:405–409. 

82.  Wayne, P. 2014. Performance Standards for Antimicrobial Susceptibility Testing; 

Twenty-Fourth Informational Supplement (M100-S24). Clin. Lab. Stand. Inst. 

83.  Weese, J. S. 2010. Methicillin-resistant Staphylococcus aureus in animals. ILAR J. 

51:233–244. 



52 
 

84.  Weese, J. S., and van Duijkeren, E. 2010. Methicillin-resistant Staphylococcus aureus 

and Staphylococcus pseudintermedius in veterinary medicine. Vet. Microbiol. 140:418–

429. 

85.  Wendlandt, S., Kadlec, K., Feßler, A. T., Monecke, S., Ehricht, R., van de Giessen, A. 

W., Hengeveld, P. D., Huijsdens, X., Schwarz, S., and van Duijkeren, E. 2013. 

Resistance phenotypes and genotypes of methicillin-resistant Staphylococcus aureus 

isolates from broiler chickens at slaughter and abattoir workers. J. Antimicrob. 

Chemother. 68:2458–2463. 

86.  Wielders, C., Vriens, M., Brisse, S., de Graaf-Miltenburg, L., Troelstra, A., Fleer, A., 

Schmitz, F., Verhoef, J., and Fluit, A. 2001. Evidence for in-vivo transfer of mecA 

DNA between strains of Staphylococcus aureus. Lancet 357:1674–1675. 

87.  Yamamoto, T., Nishiyama, A., Takano, T., Yabe, S., Higuchi, W., Razvina, O., and 

Shi, D. 2010. Community-acquired methicillin-resistant Staphylococcus aureus: 

community transmission, pathogenesis, and drug resistance. J. Infect. Chemother. 

16:225–254. 

88.  Yasuda, R., Kawano, J., Onda, H., Takagi, M., Shimizu, A., and Anzai, T. 2000. 

Methicillin-resistant coagulase-negative staphylococci isolated from healthy horses in 

Japan. Am. J. Vet. Res. 61:1451–1455. 

89.  Zhang, Y., Agidi, S., and LeJeune, J. T. 2009. Diversity of staphylococcal cassette 

chromosome in coagulase-negative staphylococci from animal sources. J. Appl. 

Microbiol. 107:1375–1383. 

  



53 
 

ABSTRACT IN JAPANESE 

先進国における新規抗菌薬の開発が停滞している一方、ヒトに対する抗菌薬

の不適切な使用を背景として新たな薬剤耐性菌が増加している。そのため薬剤耐性

菌の出現と拡散は世界的脅威となっており対策が必要とされている。さらに医療現

場だけでなく、家畜に対しても多くの抗菌薬が治療および成長促進目的として使用

され、それに伴う薬剤耐性菌が出現している。動物で出現した薬剤耐性菌は獣医療

分野の治療効果を減弱させるほか、畜産物等を介してヒトに伝播することが危惧さ

れている。世界保健機関（WHO）は 2011 年、世界保健デーで薬剤耐性菌の問題を

取り上げ、薬剤耐性菌の抑制と減少のためにヒト、動物という垣根を超えた一体的

な取り組み（ワンヘルス・アプローチ）の必要性を訴えた。この考えは国際的に受

け入れられ、薬剤耐性に関するワンヘルス・アプローチの取組が強化されている。 

メチシリン耐性黄色ブドウ球菌（MRSA）はわが国において院内感染の主要

な原因である。MRSA は黄色ブドウ球菌 Staphylococcus aureus が可動性遺伝子カセッ

ト(SCCmec)により運ばれる mecA 遺伝子を外部から獲得することでメチシリンに対

して耐性を獲得する。MRSA はヒトへの病原性が非常に強く、感染した場合に死亡

する例も多い。そのため医療現場では MRSA に対する様々な対策が取られている

が、2014 年の厚生労働省の調査によると入院患者からの MRSA の分離率は 49.1%と

諸外国に比べ非常に高く、MRSA の制御は院内感染対策の最優先課題の一つであ

る。 

海外では家畜が高率（11-46％）に MRSA を保有している事実が報告されてい

る。家畜から分離された MRSA は Multi Locus Sequence Typing で主に ST398 に型別
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され、獣医療で多く使用されるテトラサイクリン系抗菌薬へ高度耐性を示すなど、

医療現場由来株と性状が異なることから「家畜関連型 Livestock-

associated(LA-)MRSA」と名付けられ、新型の MRSA として注目された。LA-MRSA

は、家畜にとどまらず医療現場へ侵入し、院内感染を起こした報告もあることか

ら、家畜―ヒト間の MRSA の伝播防止対策のために、家畜現場における MRSA の保

菌状況に関する調査が海外で活発に実施されている。わが国でも毎年多くの抗菌薬

が家畜へ使用され、その量は医療現場の使用量のおよそ 2 倍とされる。家畜由来薬

剤耐性菌の出現への懸念から、その動向は農林水産省の家畜由来細菌の薬剤耐性モ

ニタリング事業（JVARM）により監視されている。しかし JVARM によるモニタリ

ングは大腸菌やカンピロバクターなどを対象菌種としており、MRSA の動向は明ら

かにされていない。 

本研究では、ワンヘルス・アプローチに基づき、わが国の家畜における

MRSA の現状の解明とヒトへの伝播防止対策への応用を目的とした。第 1 章では、

家畜における MRSA の分布状況を明らかにするため、国内における畜産地域の 1 つ

である茨城県の豚 100 頭から MRSA を分離した。続いて第 2 章では、より詳細に国

内における MRSA の分布状況を調査するため調査対象家畜および対象地域を拡大

し、北海道の牛と豚の合計 436 頭から MRSA の分離を試みた。また同時に、MRSA

同様に SCCmec を保有し、SCCmec のリザーバーとされるメチシリン耐性コアグラー

ゼ陰性ブドウ球菌（MRCNS）、およびメチシリン感受性黄色ブドウ球菌（MSSA）

を分離し性状解析を実施した。最後に、第 3 章では家畜由来 MRSA とヒト由来
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MRSA との関連、および食肉が MRSA の伝播媒体となる可能性について検討するた

め、家畜、食肉、ヒト由来 MRSA の性状を比較した。 

第 1 章における研究の結果、茨城県のと畜場搬入豚 100 頭中 8 頭（8%）から

MRSA が分離された。分子疫学解析の結果、海外の LA-MRSA の 1 つである

ST97/SCCmec V が分離され、テトラサイクリン耐性、マクロライド系感受性、リン

コサミド系耐性と LA-MRSA に特徴的な薬剤感受性パターンを示した。日本では多

くの家畜を輸入しており、海外から持ち込まれた可能性が考えられた。本研究で

は、海外で流行する LA-MRSA に類似する MRSA が、わが国の豚にも分布すること

を初めて明らかにした。 

第 2 章では、北海道のと畜場に搬入された豚 217 頭、牛 219 頭から MRSA、

MRCNS、および MSSA の分離を行った。MRSA は豚および牛から分離されなかった

が、6－44％の MRCNS が、21－70％の MSSA が分離された。さらに、豚由来 MSSA

は CC9 及び CC398、牛由来 MSSA は CC97 が優勢なタイプで、海外の LA-MRSA と

遺伝子型が同じ MSSA が分布していることが明らかとなった。今回得られた結果よ

り、日本の家畜における MRSA の保菌割合は海外に比べ低いものの、今後海外と同

じ LA-MRSA が発生するおそれがあることが示唆された。 

第 3 章では、第 1 章で分離された豚由来 8 株、分与を受けた食肉由来 8 株、

牛乳房炎由来 7 株、ヒト由来 100 株の MRSA を対象に分子疫学解析を実施し、その

性状を比較した。結果、牛乳房炎由来、食肉由来、ヒト由来市中感染型 MRSA

（CA-MRSA）が非常に近縁であったことを明らかとした。これら近縁な MRSA は

日本の市中で近年急激に広まっているタイプの MRSA（CA-MRSA/J）で、牛および
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食肉からの分離報告は本研究が初めてとなった。これまでの調査より、日本の家畜

における MRSA 分布状況は非常に低く、CA-MRSA/J の分離報告は無い。また、食肉

から分離される MRSA は多くがヒト由来で、ハンドリングなどによる汚染であるこ

とが疑われている。こうした背景より、本研究において食肉由来 MRSA の汚染源を

特定することはできないが、ヒト由来であった可能性が高いことが考えられた。本

研究において牛―食肉―ヒト間において、何らかの伝播経路が存在しうることが示

唆された。 

以上の成績から、わが国の豚および牛の MRSA、MRCNS、および MSSA に関

する新たな分子疫学情報を提供することができた。さらに、牛、食肉、ヒト由来

MRSA に遺伝学的関連があり、これらの間で伝播経路が存在する可能性を示した。

本研究により、伝播経路を遮断するという、新たな薬剤耐性菌対策を構築するため

の有用な知見を提供することができた。 
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