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[Introduction]

The world population will reach 9.1 billion people by 2050 and feed this
entire population an increase of food production is necessary, moreover, the
challenge is to increase food production sustainably, without damaging the
natural environment. One of the tools capable to reach this goal is Precision
Agriculture, through techniques such as Variable Rate Application (VRA),
which enables a decrease in usage of fertilizers and pesticides, followed by a

possible increase of crop productivity without area expansion.

Technologies such as Geographic Information System (GIS) and
Remote Sensing are fundamental to understand crop conditions, providing
different types of information such as crop health, plant growth stages,
plantation layout, along with others, being essential to apply Precision
Agriculture techniques. Unmanned Aerial Vehicle (UAV) is one of the Remote
Sensing platforms, which consists of aircrafts controlled remotely to acquire
high spatial and temporal resolution aerial data for different purposes including

agriculture.

This study aimed to predict corn crop yield through corn height
estimation generated through 3D photogrammetry with UAV imagery based on
Structure from Motion technology (SfM), and crop monitoring comparing along
with the Normalized Difference Vegetation Index (NDVI), a vegetation index

widely used for agricultural purposes.



[Methodology]

The experiment was conducted in a corn field of 363.48 square meters
divided into 36 grids at Rakuno Gakuen University, Hokkaido, Japan, seeded
with the hybrid 36B08 on May 1st, 2017. Between May and September,
fourteen flights campaign were made to acquire RGB, 3D, and NDVI data,

using commercial quadcopters.

The acquired data was processed through SfM technology, creating
orthomosaics and dense point clouds as output to perform different analyses
through GIS and Remote Sensing technologies such as corn height estimation,
NDVI analysis, crop growth monitoring. After processing, those data were
compared with the dataset obtained in harvest through a ground survey made

in middle October.
[Results]

For this specific corn hybrid (36B08), a low correlation between Field
Measured Height (FMH) and crop yield was found, spoiling the possibility to
estimate crop yield through height, consequently, alike happened using UAV
Height Estimation (UHE) over time. Despite, corn height estimation through
UAV presented a potential to estimate height for crop monitoring, presenting
an expressive correlation with FMH ten weeks before harvest. Comparing with
NDVI, UHE could identify crops’ growth more clearly in late stages and also

monitor growth after NDVI reaches its saturation.
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1. Introduction

By 2050, the world’s population will reach 9.1 billion, an increase of 34
percent comparing to 2009, mostly in developing countries, with 70 percent of
the population living in urban areas (FAO, 2009) . To feed this entire population,
an increase of 70 percent in food production is necessary. As an example, the
annual cereal production has to reach 3 billion tons by 2050, in 2009 the annual

cereal production was 2.1 billion tons.

Despite that fact, another challenge is to feed this population
sustainably, increase food production considering the safety and conservation
of the natural resources. The sustainability concept is based on the principle
that the needs of the present are met without compromising the needs of the
future (Spiertz, 2009). Pretty (2008) introduced that the sustainability demands
a development in agricultural technologies and practices that do not affect the
environment, leading a growth in food quality and production with minimum

side effects against the environment.

One of the technologies mentioned by Pretty (2008) is called Precision
Agriculture. A generic definition for this term, quoted by McBratney et al. (2005)
says: “that kind of agriculture that increases the number of (correct) decisions
per unit area of land per unit time with associated net benefits”, in other words,
an increase of quality and/or quantity of production, reducing environmental
hazards derived from excessive inputs (fertilizers and pesticides) application,
increasing their usage efficiency and even reducing them, through variable
management practices (Tang and Turner, 1999). As R. Bongiovanni and

Lowenberg-Deboer (2004) instanced, the concepts between sustainability and



precision agriculture are linked, using agricultural machinery coupled with
Global Navigation Satellite System (GNSS), the application of fertilizers and
pesticides where and when they are needed became possible. Called as
Variable Rate Application technique - a concept published by The University
of lllinois back in 1929 (Sawyer, 2013) — the usage of fertilizers and pesticides
more accurately on the crops generates more possibilities to reduce their
usage, reaching only the interested area, improving plant health, reducing

costs, and collaborating to reduce environmental damages.

Geographic Information Systems (GIS) and also with the improvements
in spatial and temporal resolutions of Remote Sensing technologies in different
platforms (satellites and aircrafts), strengthen the suitability for Precision
Agriculture technique (Matese et al., 2015). Capable to acquire fairy reliable
field data through a nondestructive method, delivering measurement data
through the electromagnet spectrum, allowing the assessment and monitoring
of the crop chlorophyll status, spatial distribution of the crop, addressing
important issues such as crop growth monitoring, vegetation stress detections,
different predictions and improvement of crop management practices

(Haboudane et al., 2008).

Unmanned Aerial Vehicles (UAVSs) is a platform inside the Remote
sensing technology which has been highlighted due the low cost and high
spatial/ temporal resolutions that it offers (Salami et al., 2014). UAVS, also
known as drones, are being widely used for Precision Agriculture purposes,
capturing imagery for plant/ crop analysis, acquiring information on soil water
holding and irrigation systems (Ipate et al., 2015). This technology is based in
an aircraft controlled remotely by a human or computer, coupled with a digital

camera and/or different types of sensors (multispectral, LIDAR, thermal, etc.)



to acquire data of a specific scenario. Using photogrammetric techniques,
those acquired data can result in image orthomosaics and point dense clouds

(Rokhmana, 2015).

Vegetation indexes is one of the products derived of UAVs coupled with
multispectral sensor. Normalized Difference Vegetation Index, also known as
NDVI, developed by Rouse et al. (1973) is a widespread vegetation index in
the Precision Agriculture and natural environment fields. An index calculated
from the normalized total reflectance from infrared and red bands, it is used to
estimate vegetation health condition and vegetation changes through the time.
The study made by Huang et al. (2014) also found a strong correlation between
NDVI data and crop yield, being possible to establish crop yield estimation

models, even without any historical crop yield records.

Another result obtainable through UAV platform is the 3D point cloud,
an output that can be obtainable through laser systems (LIDAR) or 3D
photogrammetry technology. Structure from Motion (SfM) technique is a low
cost photogrammetry technology that recreates a structure by overlapping a
set of offset images, using the principles of stereoscopic photogrammetry
(Westoby et al.,, 2012). The stereoscopic technique creates the illusion of
depth, simulating the human binocular vision (Ortis et al., 2013), which sees
the same scenario with a slight different angle from each eye, generating a 3D
point cloud. Each point has its own position information (X, Y, and Z)
representing different structures’ dimension in a 3D environment, enabling

different analysis of the 3D model.

The present research aims to estimate the height of a corn crop field,
using a non-modified commercial UAV (DJI Phantom 4 Pro), through 3D

photogrammetry technology for corn crop yield estimation and growth



monitoring since Yin et al. (2011) affirms that early to mid-season crop plant
height is reliable as a predictor of corn yield, which also has a strong
relationship with nitrogen (N) application rate, confirming with Raun et al.
(2001), which refers that grain yield goals is the most reliable method to
estimate pre plant fertilizer N rates. Along with that, understand the plant height
growing rate comparing with the widely used vegetation index on the Precision

Agriculture field, the NDVI.



2. Materials and Methods

2.1. Materials

2.1.1. Unmanned Aerial Vehicle

UAV terminology stands for Unmanned Aerial Vehicle, in other words,
an aircraft without a pilot on board, controlled remotely by human or a
computer. UAVs are extensively used for different industries such as film
productions, disasters management, rescue operations, military purposes, law
enforcement and border control surveillance, aerial photography for journalism,

and also for agricultural and environmental purposes.

In order to acquire data through UAV, a mounted sensor is necessary.
It is possible to mount sensors such as RGB camera, multispectral sensor,
thermal sensor, laser scanner (LIDAR), etc. For most regular photogrammetric
purposes, an ordinary RGB camera is capable to generate image
orthomosaics, point dense clouds, and digital elevation models through

photogrammetry methods.



2.1.2. Photogrammetry

Photogrammetry is the science to extract from images, the form,
dimensions, and position of the objects and/or surfaces contained therein.
Applying a technique called Structure from Motion (SfM), which consists in
advanced algorithms to recreate 3D structures from overlapped 2D imagery,
outputs such as image orthomosaics, point dense clouds, and DEM (Digital
Elevation Models) are created. This technique is based stereovision principle,
which compares the same scene from different angles to match common
points, it works as the human eyes, which can detect the perception of depth,

looking to the same scene with a slight different angle from each eye.



2.1.3. Commercial UAV

In this research two quadcopter type UAVs were used, the DJI Phantom
3 professional, coupled with a 3.97mm NDVI lens from Peau Productions Inc.
(Figure 1), a special lens with no filter, allowing all wavelengths of light reach
the sensor, separated into infrared and red bands on the Blue and Red channel
respectively; and the DJI Phantom 4 Pro with no modification along with an
iOS tablet with Pix4D Capture and Map Pilot application to design flight path
and control the flight for both UAVs remotely.

DJl is a Chinese company based in Shenzhen, China, which produces
different types of UAVs for different industries. The Phantom series is the DJI
consumer flagship quadcopters, it is being used for different industries which

goes from film production to agricultural monitoring.

DJI PHANTOM 3 PROFESSIONAL

DJI PHANTOM 4 PRO + PEAU PRODUCTIONS NDVI LENS
= = 3 f‘ = _ Y ’f " =1
[ g — . i
EQ. - il
. 7 4 A

Figure 1: Phantom 4 Pro, Phantom 3 Professional and NDVI lens from Peau

Productions Inc.



2.1.4. Flight Path Design Application

Pix4D Capture (Figure 2) is a ground station application for iOS and
Android devices which enables the ability to design a specific path for 3D
models, exporting all images in JPEG format. It is possible to set the angle of
the camera at 70 degrees, enabling the visualization of the sides of the
structure, to create more accurate 3D models. Another ground station used in
this research was the Map Pilot (Figure 3), from Maps Made Easy, differently
from Pix4D Capture, this application has the capability to shoot raw images
(DNG format), which is essential to perform reflectance calibration on the

acquired infrared and red bands data from NDVI lens

iPad & 14:47 T % 30%E 4

< Home Too far A [ e
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Figure 2: Pix4D Capture app - Path design for 3D Model data acquirement
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Figure 3: Map Pilot app - Path design for IR+R and RGB data acquirement



2.1.5. NDVI Reflectance Calibration

For the calibration of the infrared + red images from DJI Phantom 3
Professional plus the NDVI lens, the Mapir Camera Reflectance Calibration
Ground Target (Figure 4) is required, using the QGIS plugin named Mapir
Processing Plugin, the values obtained through the modified UAV is

transformed into reflectance values (Figure 5), which results in more accurate

NDVI datasets.

Figure 4: Mapir Camera Reflectance Calibration Ground Target
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BEFORE

Figure 5: Example of IR+R data before and after calibration
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2.1.6. Photogrammetry Software

To apply the SfM technique, Agisoft Photoscan Professional (Figure 7)
is a software that creates image orthomosaics and 3D models, the process
consists in basically three steps: photo-alignment, point cloud and mesh, and

outputs (Error! Reference source not found.).

Photo Alignment Point Cloud and Mesh Outputs

ORTHOMOSAIC
3D MODEL

Figure 6: Photogrammetry workflow

The first process is to add the images from the UAV into the software
(in case of NDVI data it has to be converted first to tiff format), following that,
the key points of the overlapped 2D images are extracted for image matching.
The accuracy of alignment influences the output, which is possible to preset in
the software, but higher accuracy requires more time for computation. The
second step is the creation of dense cloud and mesh, the algorithm inside the
software calculates depth information and builds the dense point cloud and
mesh. In the final process, the software creates files that can be exported into

digital surface models, otrhomosaics, and 3D models. The simulation of a
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LIDAR file format (.las) is also exportable using the dense point cloud, enabling

data edition in LIDAR software, such as Cloud Compare Stereo.
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Figure 7: Agisoft Photoscan Professional, image alignment and 3D model
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2.1.7. 3D Data Edition

The dense point cloud created with Agisoft Photoscan Professional can
be edit in Cloud Compare V2.8.1 Stereo (Figure 8), an open source software
which allows a very fine dense point alignment through a function called Cloud
Registration, which has an algorithm to register two entities called Interactive
Closest Point, minimizing the difference between two dense point clouds, in

this study the ground was used as reference for alignment.

© CloudCompare v2.8.1 Stereo [64-bit] = u] X
I© File Edit Tools Display Plugins 3D Views Help -®x
Z G [ ¥ & [ o 1@ SR MR v b - ™ 2 + SE B L s memoetter » E3 0 0wy 1S »

DB Tree 8

¥ [ & 20170526 _rgu_ffo3_30.las (G:/.
© 20170526_rgu_ff03_3D - Cl.
¥ M @ 20170713 _rgu_ffo3_30.las (G:/.
© 20170713 _rgu_ff03_30 - €.

:S6QUUERERAL FR O+ ER

Properties &

Console

[17:14:00] [LoD][pa:
[17:14:00] [LoD][pa:
[17:14:00] [LoD][pa:
[17:14:00] [LoD] Ac
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Level 8: 59299 cells (+8992)

9: 222964 cells (+55416)

structure ready for cloud '20170526_rgu_ff03_3D - Cloud' (max level: 10/ mem. = 18.47 Mb / duration: 7.6 5.)

Figure 8: Cloud Compare V2.8.1 Stereo
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2.1.8. Remote Sensing and GIS Software

Remote Sensing and GIS software are essential to compare UAV
datasets. Envi 5.4 is a Remote Sensing software that have the capability to
manage multispectral data and perform different analysis, whereas Esri’s
ArcMap 10.5 with the Spatial Analyst toolbox has the tools to perform spatial
data processing, including functions to convert data, georeference data,
calculate indexes, extract geospatial information from multispectral data
through shapefiles, etc. Along with that, through those software is possible to
compare datasets from different Remote Sensing platforms such as satellite

imagery and UAV imagery.
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2.2. Site Description and Management

The experiment was conducted on a field located at south-west of

Rakuno Gakuen University (Figure 9), Hokkaido, Japan. A field of 363.48

square meters was divided into 36 grids, created with wood stacks and strings,

containing 6 rows and 6 columns, named from E1 to E36 (Figure 10). In the

first 5 rows, each grid had 3.8m x 2.6m and the last row each grid had 4.3m x

2.6m. The shapefile of the grid was transcript through ArcMap 10.5 with the

RGB georeferenced UAV data from May 26th as a reference.

Study Area

Rakuno Gakuen University,
Ebetsu shi, Hokkaido, Japan

SRR ES L PR

Figure 9: Study area in south-west side of Rakuno Gakuen University,

Hokkaido
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Figure 10: Field grids and respective sizes expressed in meters

The seeding of hybrid corn 36B08 from Pioneer Hi-Bred International,
was made on May 1st, 2017 using a manual seeder, with each grid receiving
a different treatment during the season. Harvest was made on October 14th of
2017. For data comparison, 10 samples of each grid were collected on harvest
day, obtaining the average of plant height of each grid in centimeters, total dry

matter in g/m2 and dry grain yield in g/mz.
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2.3. Data Acquisition

For data acquisition, two UAVs were used, a DJI Phantom 3
Professional with NDVI 3.97mm lens from Peau Productions Inc. and an out-
of-the-box DJI Phantom 4 Pro. From May to September, three flights were
performed almost every week, acquiring NDVI, RGB, and 3D data, totalizing

42 flights in 14 weeks (Figure 11 and Table 1)

MAY JUNE JULY AUGUST SEPTEMBER
123456 12 3 1 1 3 45 1 2
7 89101M12213 45 c6@ 8910 2345 7 8 678 9@n1n2 345 6@38 9
14 15 16 17 18 19 20 11 12 13 14 15. 17 9 10 11 12 14 15 13 14 15 16 18 19 10 11 12 13 14 15 16
212223225@27 18 19@ 21222324 161718192021 @ 20 21 2223 24 25 26 17 18 19 20 21 22 23
282930 @ 25 26 @ 28 29 30 23242526 @ 2829 27 28 29 30 31 24 25 26 27 28 29 30

Figure 11: Data acquirement dates, between May and September 2017
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Number of images

Date 3D (Pix4D) RGB (Map Pilot) IR+R (Map Pilot)
26-May 314 109 267
31-May 313 108 204
7-Jun 318 110 204
16-Jun 319 173 212
20-Jun 314 169 213
27-Jun 315 170 213

6-Jul 319 171 211
13-Jul 318 173 213
22-Jul 317 169 212
27-Jul 319 168 211
2-Aug 317 166 198
10-Aug 316 175 220
17-Aug 319 197 214
7-Sep 316 180 210

Table 1: Number of images taken for each dataset

NDVI data was acquired using the Phantom 3 Professional with a Peau
Production Inc. NDVI lens and Map Pilot application on an iOS tablet, flying at
50 meters above the ground, angle of the camera at 90 degrees, setting an
overlap of 90 percent and side-lap of 70 percent, with white balance set at auto
mode, ISO 100, shutter speed of 1/1000 and DNG file format. After flying over

the study field, a shot of Mapir Camera Reflectance Calibration Ground Target

19



was taken to be used as a reference for reflectance values conversion (Figure

12).

Figure 12: Mapir Camera Reflectance Calibration Ground Target taken with

Phantom 3 Professional + NDVI lens

RGB data was taken using a DJI Phantom 4 Pro and Map Pilot
application for i0S, flying at 50 meters above the ground, using camera
settings at auto mode, with an overlap of 90 percent and a side-lap of 70

percent, angle of the camera at 90 degrees and DNG file format.

For 3D data, the same DJI Phantom 4 Pro was used with Pix4D Capture

application, flying at 50 meters above the ground, angle of the camera at 70

20



degrees, setting the overlap at 90 percent and side-lap at 70 percent, JPG file
format, using the camera at automatic settings, with trigger mode set at fast

mode.
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2.4. Data Processing

All orthomosaics and point dense cloud were created using Agisoft
Photoscan Professional on a Hewlett Packard Z620 workstation running
Windows 10 Pro, using medium settings for all processes, align photos, create
dense cloud and mesh, applying the projection of WGS84/ UTM zone 54N for
every output data. The orthomosaics generated from Agisoft Photoscan
Professional had a resolution of approximately 1.5 centimeters. All data were
georeferenced in ArcMap 10.5 using a Digital Globe 50 centimeters World

View 2 (WV2) Imagery from June 13th of 2017 as a reference.
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2.4.1. NDVI

For NDVI processing, after collecting the images obtained with
Phantom 3 Professional and the NDVI lens from Peau Productions Inc., all
data was converted from DNG file to TIFF file through Mapir Processing Plugin
for QGIS and processed on the photogrammetry software. The orthomosaics
created through Agisoft Photoscan Professional were calibrated to reflectance
values using the Mapir Camera Reflectance Calibration Ground Target image

on the same QGIS plugin.

Since the white balance was affected by the weather condition of each
day (white balance) the data was taken, a simple normalization, using the roof
of a building as reference (Figure 13) were performed using Map Algebra tool
on ArcMap. That normalization was made to compare the NDVI behavior

through the weeks for each grid
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Figure 13: NDVI roof reference for time series data normalization

To assess the accuracy of the NDVI lens from Peau Production Inc.,
comparisons between the UAV data and radiometric corrected satellite high
spatial and spectral resolution imagery (50cm) from Digital Globe, World View
2 (WV2) (Figure 14) and GeoEye 1 (GE1), data were made considering the
average of each grid in three periods: July 13th (UAV and WV2), August 17th
(UAV) and August 23rd (WV2), and the last one was on September 7th (UAV)
and September 1st (GE1). All data was preprocessed in ENVI 5.4, converting
DN values in radiometric values. Only in August 23rd, a thin haze was detected

affecting on the comparison with UAV data from August 17th.
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Figure 14: Digital Globe's World View 2 Imagery from July 13th with 50

centimeters resolution

Green Coverage classification was also performed to extract NDVI
values only from the vegetation to understand the influence of different
variables such as soil and shade on the NDVI values. Using ArcGIS Interactive
Supervised classification tool, every data was classified in two classes, soil
and vegetation, a shapefile was created to extract NDVI average for the

vegetation of each grid using the Zonal Statistics as Table tool.
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2.4.2. Height Estimation

The point cloud generated by Agisoft Photoscan Professional through
3D photogrammetry technique mentioned before, were aligned with Cloud
Compare V2.8.1 Stereo software, through Cloud Registration function with
May 26th data as a reference for all dataset alignments, setting the final

overlap in 30 percent and the random sampling point to 100000.

In ArcMap 10.5, one las dataset was created for each dense point cloud,
exported into a raster file for comparison, the georeferencing was also made
using WV2 Imagery from July 13th to spatially align all rasters . The Spatial
Analyst extension tool was required to calculate height from each week using
the Map Algebra tool, with a simple subtraction having May 26th as a ground
reference, since there were no plants, the UAV Height Estimation (UHE) were

calculated for every week.
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3. Results

3.1 NDVI Assessment

The comparison between NDVI lens from Peau Productions Inc. with
high spatial/ spectral resolution WV2 and GE1 Imagery, resulted in a
significant correlation with both satellites imagery. Considering the average of
each grid, on July 13th, the NDVI data from the UAV and the Satellite (WV2)
showed an R-Squared of 0.76 (Figure 15). Comparing the data obtained with
UAV on August 17th and the data from the WV2 Imagery taken on August 23rd,
an R-Squared of 0.527 was found (Figure 16), and this relatively low value on
the WV2 Imagery was due the thin haze mentioned before. The last data
acquired through UAV was on September 7th and compared to GE1 Imagery
from September 1st, an R-Squared of 0.659 was presented (Figure 17).
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Figure 15: NDVI Correlation between UAV Imagery and WV2 Imagery on
July 13th
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Figure 16: NDVI Correlation between UAV Imagery from August 17th and
WV2 Imagery from August 23rd
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NDVI Correlation Sep 7th (UAV) vs Sep 1st (GE1)
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Figure 17: NDVI Correlation between UAV Imagery from September 7th and
GEL1 Imagery from September 1st

The Green Coverage classification assessment, which was made was
to detect the interference of the soil on NDVI values, showed the same pattern
of NDVI average without extracting the vegetation through classification

(Figure 18), having a correlation of 0.98 between them (Figure 19).
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Figure 18: Normal NDVI vs Green Coverage NDVI through time
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Figure 19: Correlation between Green Coverage NDVI and Normal NDVI
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3.2 UAV Height Estimation Assessment

Considering the saturation on UHE field average from August 17th until
September 7th, the correlation of each grid average obtained between the
UHE and the ground measured height in October 14th was 0.87 (R-Squared)
(Figure 20).

UHE Sep 7th vs FMH Oct 14th
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Figure 20: Correlation between UAV Height Estimation from September 7th
and Field Measured Height from October 14th
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3.3 NDVI and UAV Height Estimation through time

NDVI and UAV Height Estimation (UHE) field averages presented the

following characteristics through time (Figure 21):

NDVI Average and UHE Average
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Figure 21: NDVI average and UAV Height Estimation average through time

From May 26th to June 20th, the UHE field average of each grid
presented negative values, reaching the lowest value at June 16th — around
minus 7 centimeters (Figure 22). On June 27th the UHE field average had the
first positive value. On the other hand, NDV!I field average showed a constant
increase from May 26th until July 22nd, only on June 20th a lower value was

found contradicting the increase pattern.
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Figure 22: NDVI average and UAV Height Estimation average between May
26th and June 27th

From June 27th until August 17th, UHE field average showed a
consistent increase, whilst NDVI field average reaches its saturation on July

22nd (Figure 23).

UHE field average showed a saturation after August 17th, maintaining
the same value until September 7th — three weeks later. NDVI field average,
presented a small decrease from August 2nd, reaching the 0.406 value on

September 7th (Figure 24).
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Figure 23: NDVI average and UAV Height Estimation average between June
27th and August 17th
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NDVI Average and Height Estimation Average
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Figure 24: NDVI average and UAV Height Estimation between August 2nd
and September 7th
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3.4 Field Data

The data measured on the field (Table 2), showed a correlation of 0.43
between Field Measured Height and Dry matter (Figure 25) and a correlation
of 0.47 between Field Measured Height and Dry grain yield was 0.47 (Figure

26), considering each grid average.
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Ground Measured Height

Code (GMH) (cm) Dry Matter (g/m?2) | Dry Grain Yield (g/m?)
E1l 247.00 1202.48 527.34
E2 257.00 1270.21 630.46
E3 270.00 1322.64 656.09
E4 265.00 1456.59 680.74
ES 251.00 1418.44 658.36
E6 252.00 1445.53 680.14
E7 238.00 1115.35 468.59
E8 264.00 1484.55 727.44
E9 272.00 1527.42 748.28
E10 272.00 1242.88 599.99
E11 273.00 1477.35 743.18
E12 260.00 1586.01 778.88
E13 236.00 979.08 410.28
E14 263.00 1227.48 595.50
E15 267.00 1364.64 706.65
El6 267.00 1369.74 630.04
E17 260.00 1626.91 796.13
E18 247.00 1393.03 659.01
E19 244.00 1135.32 542.26
E20 259.00 1095.74 472.20
E21 260.00 1388.70 702.17
E22 246.00 1135.26 510.25
E23 249.00 1281.22 630.51
E24 235.00 1182.28 534.21
E25 247.00 1039.27 417.94
E26 264.00 1211.53 581.44
E27 257.00 1135.21 471.92
E28 240.00 1005.37 409.14
E29 256.00 1375.95 697.22
E30 229.00 978.27 399.63
E31 247.00 1056.25 509.55
E32 265.00 1451.59 667.39
E33 245.00 1147.63 552.02
E34 243.00 1117.47 495.68
E35 249.00 1456.77 747.82
E36 233.00 1122.25 470.97

Table 2: Data measured on the field on October 14th
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Figure 25: Correlation between Dry Matter measured in the field and Field

Measured Height

38



Dry Grain Yield vs GMH
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Figure 26: Correlation between Dry Grain Yield and Field Measured Height
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3.5 Correlations through Time

The correlation between UAV Height Estimation through time and Dry
matter shows R-Squared lower than 0.5 for every date (Figure 27). Comparing
UHE with Dry Grain Yield the highest correlation was found on August 2nd with
an R-Squared value of 0.510, for the other dates, values lower than 0.5 were
find (Figure 28).

UHE vs Dry Matter through time
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Figure 27: Correlation between UAV Height Estimation and Dry Matter

through time
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Figure 28: Correlation Between UAV Height Estimation and Dry Grain Yield

through time

The same happened with NDVI, with correlation values under 0.5

comparing with Dry Matter (Figure 29) and Dry Grain Yield (Figure 30).
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Figure 29: Correlation between NDVI and Dry Matter through time
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Figure 30: Correlation between NDVI and Dry Grain Yield through time
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The correlation between UAV Height Estimation through time and the
FMH obtained on October 14th, presented a significant correlation from August

2nd (Figure 31), with an R-Squared of 0.68.
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Figure 31: Correlation between Field Measured Height and UAV Height

Estimation through time
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3.6 Crop Monitoring

Over 14 weeks, the UHE showed the behavior expressed in Figure 32,

with a resolution of 2 centimeters per pixel with higher values displayed in

magenta and lower values in green.
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Figure 32: UAV Height Estimation throughout time

NDVI obtained through UAV presented the behavior showed in Figure

33, with 2 centimeters per pixel, with higher values expressed in green and
lower values in yellow.
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Results - NDVI
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Figure 33: NDVI from UAV throughout time
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4. Discussion

The high correlation between satellite data (WV2 and GE1) and UAV
data taken with NDVI lens from Peau Productions Inc., presented the capability
of the NDVI lens, being possible to estimate NDVI using a low-cost system
with high spatial resolution (around 2 centimeters), giving enough details for

vegetation analysis.

Since the NDVI average values of each grid were used in this study, a
high correlation between NDVI average value obtained with Green Coverage
classification and the normal NDVI average was presented (R-Squared of
0.98), the normal NDVI was chosen to be used in this study because of its

simplicity, requiring no imagery classification.

NDVI field average obtained through UAV, displayed continuous growth
until July 22nd (when reached its saturation), with an exception on June 20th,
which the NDVI field average value was lower than the previous data (June
16th). This fact can be explained because of the soil influence on the NDVI
average value (Huete, 1988), the same happened with NDVI obtained through
Green Coverage classification since the plant is very small, the algorithm
classification allowed some soil in the vegetation class. In June 16th and June
27th, the soil moisture was higher than July 20th, changing the color of the soil

(Figure 34), causing this lower value.
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Figure 34: Different soil moisture among June 16th, 20th, and 27th

Apart from that, NDVI field average data obtained through UAV showed
to be very sensitive on early stages of the crop, enabling the ability to follow
the growth of the crop. As Strachan et al. (2002) quoted, the plant growth is a
function of nitrogen and water availability, understanding the crop growth on
early stages, provides more chances to the producer to decide which
management is adequate for the situation, improving crop health and enabling

the capacity of yield growth monitoring.

On the other hand, UHE field average presented negative values on
early stages, until June 20th. This may occur for two reasons: the plants’ small
size which cannot generate an accurate dense point cloud (Figure 35) and the
low accuracy of the cloud alignment through Cloud Compare V.2.8.1 Stereo
software. 3D photogrammetry struggles to determine thin or small objects,
according to a study by Javernick et al. (2014), the surface vertical error was
10 centimeters, using the same photogrammetry software (Agisoft Photoscan

Professional), and also the camera light exposure influences on the final 3D

a7



point cloud (Blizard, 2014). Therefore, the methodology and/or parameters
behind point cloud alignment did not present to be suitable for plant growth
monitoring at early stages of the crop, some adjustments to the methodology

are needed, such as point cloud classification and noise reduction.

Figure 35: Dense point cloud of June 7th

UHE field average had an increasing development from June 27th until
August 17th, where reached its saturation. Comparing to NDVI field average,
the UHE field average reached its saturation 4 weeks later, allowing plant
growth monitoring after the NDVI field average values’ saturation and
consequently a decrease in its value. Those data showed that even the plant
reached the maturity and/or saturation on NDVI, the plants keep growing in
height, and even so, UHE enables late stage growth monitoring, when the
plants are vulnerable to drought stress, nutrient deficiency or any kind of

damage such as hail.
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Considering the constant value of UHE from August 17th until
September 7th, the significant correlation obtained with October 14th FMH
values indicates that the height estimation generated through 3D
photogrammetry imagery from UAV, can track plant height growth rate over
time through estimation and not real height since 3D Photogrammetry

technology presented some limitations to acquiring real size information.

Nevertheless, FMH and UHE start having a significant correlation from
August 2nd, enabling crop height prediction 10 weeks before harvest. But in
this specific case, the hybrid 36B08 from Pioneer Hi-Bred International, had a
small correlation between FMH and Dry Matter, and FMH and Dry Grain Yield,
with correlation values lower than 0.5 (0.4358 and 0.4744 respectively),
showing that for this specific hybrid, height has no strong relationship with corn
yield. Along with that, the correlations between UHE and Dry Matter, UHE and
Dry Grain Yield, also had values lower than 0.5, the same happened with NDVI
values, consistent with what was achieved with UHE but confronting with
Huang et al (2014) where was found a strong correlation between NDVI and

crop yield using time series data from MODIS-NDVI.

Although corn yield estimation was not possible in this specific case,
UHE showed to be a useful tool for crop monitoring along with NDVI, offering
growth data after NDVI saturation, providing a more clear understanding of
detecting crop growth comparing to NDVI, due to bigger values difference
(Figure 32, Figure 33). Confirming with Bendig et al. (2015) mentioned that the
usage of UAV to acquire different indexes and plant height is an exceptional
way to acquire data for agriculture purposes, giving a high temporal and spatial

resolution with high-cost benefit.
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Further studies are necessary to conclude that corn height estimation
using a commercial UAV is suitable for corn yield estimation. Manual camera
setting and white calibration are recommended to acquire 3D data since light
exposure seems to affect in the dense point cloud creation. Along with that,
different corn varieties should be tested in order to understand the relationship

between corn height and yield.
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5. Conclusions

To achieve the food demand by 2050, those agricultural technologies
are presenting to be necessary, not only in food production but also to preserve
the environment, in other words, sustainable agriculture. Precision agriculture
techniques showing its potential to improve agricultural practices in a
sustainable way, together with GIS and Remote Sensing technology for crop

management and monitoring.

In this research, the main goal was to find the correlation between
height estimation using a low-cost Remote Sensing platform with a UAV and
corn yield through time, to give enough information in the right time to the
producer to take adequate decisions in crop management of all stages,

including after harvest.

Even though FMH and UHE could not predict corn yield in this specific
case (with the B6B08 hybrid), height estimation using UAVs presented high of
potential for yield prediction and crop monitoring, since other researches show
the correlation between height and crop yield, such as Yin et al. (2011)
presented, it also can be used along with NDVI to assess all stages of the

crop, contributing to earlier management decisions.

Further studies with different hybrids are recommended, and
improvements on the methodology (in data acquirement and data processing)

for height estimation using UAVs are suggested.
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