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ABSTRACT. The fine structures of different tendons in various animals at different ages have 
been studied extensively to reveal their arrangement and growth patterns. However, knowledge 
of the microstructures of the growing tenocytes in the tendons of piglets is still lacking. Thus, 
we performed the first morphometric analysis to describe the characteristics of tenocytes in the 
metacarpal superficial digital flexor tendon of 0-, 10- and 20-day-old piglets. In the present study, 
hydrochloric acid/collagenase digestion was applied to remove the interstitial connective tissue 
to obtain clear visualization of intact tenocytes and their cytoplasmic processes (Cp). Then, the 
morphometry of the tenocytes was investigated by optical and electron microscopy. The mean ± 
SE values of the fascicle area, number of tenocytes/fascicle, cell density, number of Cp/tenocyte, 
length of Cp, and thickness of Cp were compared among the three age groups. Significant 
differences (judged at P<0.05) were found in almost all morphometric aspects among the age 
groups, except for the number of Cp/cell (P=0.545) and thickness of the Cp (P=0.105). A decrease 
of cell density corresponded with an increase in the length of the Cp, which were extended 
to connect either with the Cp of the other tenocytes or the surrounding endotendineum. 
Moreover, an increase of the fascicle area reflected the increase in tendon diameter. The revealed 
morphometric characteristics are thus the outcome of tendon growth.
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The tendon is a densely and regularly arranged group of collagen fibers mediating the attachment of the skeletal muscle to 
the bone. As such, the tendon plays significant roles in transmitting tension from the muscle to the bone, producing force in 
addition to that being produced by muscular contraction [20], regulating the articular position, and protecting the muscle fibers 
from damage [15]. Approximately 90–95% of the cell population in the tendon are tenocytes, which are tendon cells that localize 
along the longitudinal orientation of the collagen fibers [9]. Tenocytes are known to be responsible for producing collagen fibers, 
proteoglycans, degradation enzymes, and cytokines to maintain the dynamic equilibrium of both the fibrous and non-fibrous 
components of the extracellular matrix (ECM). These components are usually similar to other connective tissues, except that 
they contain more abundant collagen fibers that follow a course along a hierarchical pattern toward their bony destinations. The 
collagen fibers in each tendon generally assemble into fascicles, each of which is surrounded by the endotendineum, which is 
the intratendinous trabeculae of the peritendineum. Such arrangement is a fundamental property of the tendon to confer it with 
flexibility and resistance to high tension [13].

The extent of productivity of the collagenous population seems to be related to the age of animals. In murine species, an 
increase in the number of collagen fibrils was detected only in the fetal stage, but the length and diameter of these fibrils increased 
postnatally [8]. An increase in the diameter of collagen fibrils and the ratio of collagen fibrils per unit area in the tendon of 
porcine species with age have also been reported. In porcine, collagen fibrils start weaving to form collagen fibers at birth, but 
the parallel orientation of these fibers is established subsequently. The thickness of the individual collagen fibril in 6-month-old 
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pigs was reported to be twice (52–102 µm) that of newborn piglets. This increase of collagenous components would result in a 
corresponding increase of the total length and cross-sectional area of the tendon. Thus, we speculated that age might be one of the 
major factors contributing to the observed differences in tendinous generation. Since the growth of the tendon is surely related to 
the activity of tenocytes, investigating the morphometry of the tenocytic population in the tendon of growing animals should yield 
a better understanding of the growth pattern of tenocytes.

It is well established that Cp of tenocytes are extended in all directions to connect with either the collagen bundle of the 
endotendineum or Cp of the vicinal tenocytes [2, 21]. Variation and different amounts of collagenous components would affect 
the morphometry of the tenocytes, including the length and thickness of their Cp, in the tendons of each animal species [7]. The 
tenocytes in the tendons of the adult rat tail were found to vary in size, with a range of 4–7 µm in width and 15–25 µm in length; 
moreover, the Cp were approximately 3 µm or less in length [22]. However, it is difficult to conduct microscopic observations of 
tenocytes and their processes in an intact tendon since the interstitial connective tissues can interfere with the visual information. 
Therefore, ample elimination of these fibrous components should alleviate the challenges associated with the morphometric 
investigation of tenocytes. A connective tissue digestion technique using hydrochloric acid (HCl) and collagenase has been verified 
to effectively remove these extracellular components without damaging the cellular components of any chemically fixed tissues 
[15]. These two chemicals were first used for the investigation of collagen fibers and the basement membrane in biopsied samples. 
The technique was then modified for removing extracellular substances to yield better information of the tenocytes [6]. Thus far, 
one study has applied this technique to investigating the Achilles tendon of the rat [15]. Therefore, we sought to conduct the first 
study using a similar technique to facilitate the morphometric analysis of tenocytes and their Cp in the superficial digital flexor 
tendon (SDFT) in the forelimb of piglets aged 0, 10 and 20 days.

MATERIALS AND METHODS

Animals
Fifteen (five 0-day-old, five 10-day-old and five 20-day-old) crossbred (Land Race × Large Yorkshire × Duroc) piglets of 

the Rakuno Gakuen University farms were used in this study. Animal experiments strictly conformed to the Laboratory Animal 
Guidelines of the Experimental Animal Committee of Rakuno Gakuen University (approval number: VH14C4).

Tendon collection
Anesthesia was performed by the intraperitoneal administration of 20 mg/kg pentobarbital (Somnopentyl®, Kyoritsu 

Pharmaceutical, Tokyo, Japan). The animals were euthanized by exsanguination and then the SDFT coursing behind the metacarpus 
was collected.

Removal of extracellular connective tissue
Five 5-mm-thick sections from each tendon were transversely resected with a sharp razor blade. The blade was wiped with 

absolute ethanol prior to resecting so as to remove any moisture, grease, dust, and rust that might contaminate the tendons. The 
resected samples of each tendon were placed in separate test tubes and fixed with 3.0% glutaraldehyde with 0.1 M phosphate-
buffered saline (PBS), pH 7.4, overnight at room temperature. The sections were then washed three times consecutively for 10 min 
each in 0.1 M PBS with mild shaking. The PBS was then replaced by 6 N HCl and digestion was conducted for 15 min in a 60°C 
water bath with periodical shaking. Thereafter, three more consecutive 10-min washings with PBS were carried out in the water 
bath at 60°C for the first two washings and then at 30°C for the third wash. The PBS was then replaced by a collagenase solution 
prepared by dissolving 1 mg/ml collagenase (Brightase-C, Nippi Co., Tokyo, Japan) in a buffer solution containing 50 mM Tris-
HCl, 200 mM NaCl and 5 mM CaCl2. The digestion was performed in the 30°C water bath for 12 hr, followed by three consecutive 
10-min washes with PBS in the 30°C water bath. These samples were used for further investigations by optical microscopy and 
electron microscopy.

Scanning electron microscopy
The digested samples were post-fixed for 1 hr with 1.0% osmium tetroxide, followed by three consecutive 10-min PBS washes. 

Thereafter, a series of treatments and washes were performed to obtain conductive dyeing: 1% tannic acid for 30 min, three 
consecutive 10-min PBS washes, 1% osmium tetroxide for 1 hr, and three consecutive 10-min PBS washes. Dehydration with 
an ethanol series was carried out for 30 min at each concentration, followed by three consecutive 30-min dehydrations in 100% 
ethanol. The samples were further treated with a mixture of 100% ethanol and t-butyl alcohol (1:1) for 30 min, and then with only 
t-butyl alcohol for 30 min three times. After freezing, the samples were freeze-dried in a freeze dryer (JFD-300; JEOL Ltd., Tokyo, 
Japan). The samples were ion-coated with platinum using a magnetron sputtering apparatus (JUC-5000; JEOL Ltd.). A scanning 
electron microscope (JSM-5200, JEOL Ltd.) was used at an acceleration voltage of 20 kV to confirm the successful removal of the 
interstitial connective tissue and number of Cp.

Optical and transmission electron microscopy
The digested samples were post-fixed with a 1.0% osmium tetroxide solution, dehydrated with an ethanol series, and embedded 

in Quetol 812 (Nisshin EM, Tokyo, Japan). An ultramicrotome (Reichert Supernova, Leica Microsystem, Tokyo, Japan) was used 
for preparing semi-thin (1.0–1.5 µm) and ultra-thin (80 nm) sections. The semi-thin sections were mounted on glass slides, stained 
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with toluidine blue, and observed with an optical microscope for determination of the number of tenocytes/fascicle and the fascicle 
area. The ultra-thin sections were mounted on a 200-mesh copper grid, dried, and counter-stained with 1% uranyl acetate for 1 min 
and then with 2% lead citrate for 5 min. A transmission electron microscope (JEM-1220; JEOL Ltd.) was applied at an accelerating 
voltage of 80 kV to investigate the length, thickness, and adhering termini of the Cp.

Morphometric analysis of tenocytes
Image J analysis software (version 1.48v, National Institutes of Health, Bethesda, MD, U.S.A.) was used for the morphometric 

analysis of tenocytes observed by optical and electron microscopy. On the optical micrographs, five fascicles in each semi-thin 
section were randomly selected for measuring the area of the fascicles (µm2) and to count the number of tenocytes per fascicle. 
Then, the cell density (number of tenocyte/104 µm2) was analyzed. The scanning electron micrographs were used to count 
the number of Cp per tenocyte. Measurement of the length and thickness of Cp was performed on the transmission electron 
micrographs using only the Cp for which the whole length, from the cell body to the terminal adherence, was visible. The thickness 
of each Cp was measured at its proximal, middle and distal positions.

Statistical analysis
The Kruskal-Wallis rank sum test was employed for examining the number of Cp. Variation in the other morphometric aspects 

among the three age groups was tested by one-way analysis of variance, followed by the Tukey post-hoc test for multiple 
comparisons of means. Statistical significance was determined at P<0.05 in all cases.

RESULTS

Structural organization of the digested tendons
Tendons of the 0-, 10- and 20-day-old piglets digested with 6 N HCl for 15 min were processed for scanning electron 

microscopy. Clear observation of the tenocytes, Cp, and intercellular spaces strongly proved that the digestion with HCl and 
collagenase could effectively remove the interstitial connective tissue in the tendon of each age group without damaging 
the tenocytes (Fig. 1A–C). The intercellular spaces between each Cp varied in size. In addition, the peritendineum, the thick 
connective tissue sheath enclosing the whole tendon, still existed in situ (Fig. 1B). This sheath sent its intratendinous trabeculae or 
endotendineum into the tendon (Fig. 1A–F). Each primary endotendineum also gave off secondary and tertiary branches to encircle 
each group of tenocytes to form fascicles of different sizes. The Cp of each tenocyte were found to randomly connect either 
with the endotendineum or with the Cp of the neighboring cells. This pattern was highly consistent with that observed by optical 
microscopy (Fig. 1D–F).

Tenocyte population
The digested tendons of all age groups were processed for optical microscopy to analyze the fascicle area, number of cells per 

fascicle, and cell density (Fig. 1C–F). Although the fascicle areas and cell number per fascicle increased, the cell density decreased 
with increasing age (Fig. 3, Table 1). Significant differences (P<0.05) in each of these three morphometric aspects were found 
among the three age groups.

Cp of tenocytes
After digestion, the tendons of all age groups were processed for electron microscopy. In general, the tenocytes displayed an 

elongated shape, and the elongated nucleus usually occupied almost the entire perikaryon. Cp of different lengths and thicknesses 
were found extending from all sides of the cell (Fig. 2A and 2B). Two different adhering destinations of Cp were observed, either 
to the collagen fibrils of the vicinal endotendineum (Cp-to-endotendineum pattern, Fig. 2A) or to the Cp of the adjacent tenocyte 
(Cp-to-Cp pattern, Fig. 2B). In the Cp-to-endotendineum pattern, numerous finger-like projections were seen emanating from the 
terminal Cp to adhere to each collagen fibril of the endotendineum (Fig. 2A inset). Adherences were detected not only with the 
superficial fibrils but also with the collagen fibrils residing inside. These projections spanned approximately 600–700 nm along the 
longitudinal axis of the collagen fibrils. Adherence in the Cp-to-Cp pattern could appear either in a side-to-side (data not shown) or 
end-to-end fashion (Fig. 2B inset). Slight expansion at the terminal ends of both Cp was evident. The two Cp adhered to each other 
by an intercellular junction.

The number of Cp per cell varied from 2 to 6 in the 0-day-old group and from 2 to 7 in the other two groups. Although the 
distribution of the number of Cp per cell showed slight variation among groups, it did not appear to increase with age (Fig. 4). 
Indeed, there was no significant difference in the number of Cp per cell among groups (P=0.545, Table 1).

The thickness of each Cp was measured perpendicularly at its proximal, middle and distal portions, and the average values of 
the three sites are presented. The thickness of the Cp ranged from 17.25 to 80.93 nm (with the majority found to be in the range 
of 30–70 nm) in the 0-day-old piglets, from 31.91 to 83.81 nm (with the majority being 30–60 nm) in the 10-day-old piglets, and 
from 34.41 to 93.55 nm (with the majority being 30–80 nm) in the 20-day-old piglets (Fig. 4). Although the distribution of the 
thickness of Cp was slightly shifted to the right, indicating greater thickness with increased age, there was no significant difference 
in the thickness of Cp among groups (P=0.105, Table 1).

The length of each Cp was measured from the initial cytoplasmic protrusion at the perikaryon to its end at the adhering terminal. 
This length varied from 1.65 to 10.20, 2.70 to 15.35 and 3.78 to 19.39 µm in the 0-, 10- and 20-day-old piglets, respectively (Fig. 4). 
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The distribution of Cp length was markedly shifted to the right in the older piglets, indicating that the length of Cp increased with 
increasing age. Indeed, significant differences in the length of the Cp were found among groups (P<0.05, Table 1).

DISCUSSION

The superficial digital flexor muscle of the forelimb in piglets originates from the medial epicondyle at the distal end of the 
humerus. It is composed of two heads of different sizes. The SDFT originates from the smaller head that descends along the 
caudomedial side to the ulna and along the caudal side to the metacarpus. At the distal end of the metacarpus, the SDFT divides 
into medial and lateral branches, which run to insert onto the palmar surface of the middle phalangeal bones. In the present study, 
only the metacarpal portion of the SDFT of piglets was used for morphometric analysis. In general, the whole tendon is ensheathed 
by the peritendineum, a thick connective tissue sheath that sends its endotendineum or intratendinous trabeculae into the tendon. 
The strands of this primary connective tissue send their secondary and perhaps tertiary branches throughout the tendon in a random 
fashion to form loops surrounding the group of tenocytes. Each loop, the so-called fascicles, contain numerous tenocytes, dense 
connective tissue, and amorphous ground substances. The aim of this study was to investigate only the tenocytes; thus, connective 
tissue digestion was applied. The results of the digestion were similar to those reported for the rabbit calcaneal tendon and rat 
tail tendon [3, 6, 7, 15]. Moreover, HCl, KOH and NaOH, either used alone or in combination with collagenase, have also been 
reported to have the capability to digest the intercellular connective tissue in the tubular organs and ventricle of rats and humans 
[11, 26]. Papain was also used for the isolation of collagen and proteoglycans in the human rotator cuff tendon [19]. These acid 
or basic treatments split the triple helical strands to break down the collagen fibrils into short dialyzable peptides, which are 

Fig. 1. Scanning electron (A–C) and optical (D–F) microscopy images of the superficial digital flexor tendon of 0- (A, D), 10- (B, E), 
and 20-day-old (C, F) piglets after removal of the intercellular connective tissue. Random ramifications of cytoplasmic processes with 
intercellular spaces of different sizes were clearly observed. Tenocytes (arrowheads) are enclosed in groups of fasciles of different 
sizes extending from the peritendineum (P), endotendineum (En), and their secondary to tertiary branches. The intercellular distances 
varied among different areas, but were generally widened with increasing age [Bar=50 µm (A), 10 µm (B, C), 0.1 mm (D–F)].
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then further degraded into hydrolysable fragments by relevant 
enzymes [14]. Collagenase does not affect the tenocytes since 
the membrane of the cell does not contain collagen. Moreover, 
the dense and regular arrangement of the endotendineum and 
peritendineum should play a protective role against the digestion 
by collagenase. Thus, the intact tenocytes and collagenous 
trabeculae observed in the whole tendon indicated that the samples 
were well-prepared for the morphometric analysis (Fig. 1A–C).

Comparison between the digested tendons of 0-, 10- and 
20-day-old piglets using optical microscopy clearly revealed that 
the tenocyte number per fascicle, intercellular spans between 
each tenocyte, and fascicle area were significantly increased 
with increasing age (Table 1, Fig. 1C–F). In younger animals, 
an increased number of tenocytes and amount of the ECM of 
the growing tendon truly reflect the active mitotic activity of 
the tenocytic precursor cells, which subsequently transform to 
tenocytes to produce the ECM in order to cope with the increasing 
area of each fascicle [5, 8, 16, 25]. In the present study, the 
total numbers of tenocytes changed significantly with age but 
still dispersed within the growing fascicles. The increase in the 
amount of intercellular connective tissue and amorphous ground 
substances could certainly widen the intercellular space, thereby 
resulting in the observed increase of the fascicle area. Although 
the number of tenocytes shows a marked increase in young 
animals, the rate of increase might not be constant throughout the 
animal’s life. Accordingly, Lavagnino et al. [10] demonstrated 
a significant decrease in this number in older rats. Moreover, 
the non-proportional increase between cell number and fascicle 
area would result in a diminishing outcome with respect to the 
cell density (Table 1). Although similar results were reported by 
Ippolito et al. [7], Lavagnino et al. [10], Nakagawa et al. [17] 
and Stanley et al. [24], different results were demonstrated in 
other studies, including an increase [18, 24] and no change in cell 
density [4, 27]. The likely sources of these conflicting findings 
are different quantification methods, ages of the animals, and 
treatments in the different studies.

Our ultrastructural investigation did not reveal a substantial 
difference in the morphology of tenocytes and their Cp in the 
piglet tendons. The shape and growth of the tenocyte followed 
the direction of the running course of the intercellular connective 
tissue, as found in other studies [8, 15]. Although the number of 
Cp per tenocyte did not differ significantly among the age groups 
in the present study, Murata et al. [15] reported a reduction of 
the secondary branches of the Cp in the calcaneal tendon of older 
rats. These branches frequently appeared with fragmentations or 
perforations, especially at their ends. However, similar to Murata 
et al. [15], we observed elongation of the primary Cp of the tenocyte. The increase in Cp length appeared to correspond with the 
increase of fascicle area. Since the tenocytes in young animals actively produce the ECM, the distance between each cell would 
likely increase as a result of the increased amount of ECM [8, 25], which would in turn increase the fascicle area. Thus, we suggest 
that the length of Cp increased to conform to the increased fascicle area, because the tenocyte had to increase its Cp length to be 
able to span across the enlarged space [8]. Moreover, the increased fibrous and non-fibrous components [8] should be able to yield 
a certain compressive effect against the thickening process of the lengthened Cp. Accordingly, there was no significant difference in 
the thickness of Cp among the tendons of piglets of different ages.

Adherence to the terminal end of each Cp appeared in two different patterns: Cp-to-Cp and Cp-to-endotendineum. The Cp-to-Cp 
pattern is the adherence of a Cp of one tenocyte to a Cp of the adjacent tenocyte where intercellular communication takes place. 
The gap junction located in this intercellular structure should be necessary for the cellular coordinate for proliferation, especially 
in the growing tendon [1, 12, 23, 24]. In the Cp-to-endotendineum pattern, the functional tenocyte extends its Cp across the 
intercellular space to anchor or hold onto the vicinal intratendinous trabeculae. From a morphological standpoint, the adherence of 
the Cp-to-endotendineum pattern seems to be more secure than that of the Cp-to-Cp pattern. The finger-like projections allow one 
Cp to adhere to many superficial and deep collagen fibrils. In addition, the span of the adherence of a Cp covers a larger area of the 

Fig. 2. Transmission electron micrographs of the superficial digi-
tal flexor tendon of 0-day-old piglets demonstrating two different 
adhering patterns of the cytoplasmic processes (Cp) of tenocytes 
(Te): the Cp-to-endotendineum (A) and Cp-to-Cp pattern (B). 
Cp of different lengths extended from all sides of the tenocytes. 
Insets in A and B showed enlargement of the rectangles in their 
corresponding micrographs. At the endotendineum (A inset), the 
Cp expanded and sent its finger-like projections to adhere with 
the collagen fibrils. Slight expansion was detected at the terminal 
ends of both Cp in the Cp-to-Cp pattern. The intercellular junc-
tion was also evident (B inset, arrow) [Bar=1 µm (A), 100 nm (A 
inset), 2 µm (B) and 0.2 µm (B inset)].
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endotendineum. Therefore, this adherence should function to conserve the cellular stabilization and integrity of the tendon.
In summary, an increase in length and diameter of the SDFT in growing piglets likely results from the increase in the tenocyte 

number per fascicle and fascicle area. The decreased cell density results from the disproportional increase between the tenocyte 
number and fascicle area. The length of the Cp was increased in correspondence with the expanding intercellular space, together 
with the increasing fascicle area. However, no difference was found in the number of Cp per cell and the thickness of Cp 
among age groups. These morphometric characteristics correlate with the growth of the tendon to some extent. Further study 
on these particular aspects, for example using serial block face-scanning electron microscopy [25], would help to gain a deeper 
understanding of the growing pattern and provide valuable information for three-dimensional reconstruction of the tenocytes, 
intercellular tissues, and tendon as a whole.

Fig. 3. Distribution of the fascicle area, number of cells per fascicle, and cell density in the superficial 
digital flexor tendon of 0-, 10- and 20-day-old piglets. The fascicle area and cell number increased, 
whereas the cell density decreased with age. However, there was only a slight increase in the number of 
cells per fascicle.

Table 1. Morphometric analyses of the tendons of 0- (0 d), 10- (10 d) and 20-day-old (20 d) piglets

Morphometry (Mean ± SE) 0 d 10 d 20 d
Area of fascicle (µm2) 2,428.9 ± 158.42a 4,057.5 ± 264.36b 9,897.9 ± 775.29c

Number of cells/fascicle 23.1 ± 1.62a 33.7 ± 2.36b 40.1 ± 3.35c

Cell density (/104 µm2) 96.7 ± 2.42a 81.6 ± 1.54b 40.9 ± 0.89c

Number of Cp/cell 4.3 ± 0.12a 4.2 ± 0.16a 4.4 ± 0.16a

Thickness of Cp (nm) 48.1 ± 1.99a 53.4 ± 2.06a 53.0 ± 1.75a

Length of Cp (µm) 4.5 ± 0.18a 6.6 ± 0.28b 9.5 ± 0.38c

Different superscripts in the same row indicate statistical significance at P<0.05. Cp, cytoplasmic processes.



N. TAKAHASHI ET AL.

1966doi: 10.1292/jvms.17-0436

REFERENCES

 1. Becker, D. L. and Mobbs, P. 1999. Connexin alpha1 and cell proliferation in the developing chick retina. Exp. Neurol. 156: 326–332. [Medline]  
[CrossRef]

 2. Benjamin, M. and Ralphs, J. R. 1997. Tendons and ligaments--an overview. Histol. Histopathol. 12: 1135–1144. [Medline]
 3. Coffey, J. W., Fiedler-Nagy, C., Georgiadis, A. G. and Salvador, R. A. 1976. Digestion of native collagen, denatured collagen, and collagen 

fragments by extracts of rat liver lysosomes. J. Biol. Chem. 251: 5280–5282. [Medline]
 4. Couppé, C., Svensson, R. B., Heinemeier, K. M., Thomsen, E. W., Bayer, M. L., Christensen, L., Kjær, M., Magnusson, S. P. and Schjerling, P. 

2017. Quantification of cell density in rat Achilles tendon: development and application of a new method. Histochem. Cell. Biol. 147: 97–102. 
[Medline]  [CrossRef].

 5. Dowling, B. A., Dart, A. J., Hodgson, D. R. and Smith, R. K. 2000. Superficial digital flexor tendonitis in the horse. Equine Vet. J. 32: 369–378. 
[Medline]  [CrossRef]

 6. Evan, A. P., Dail, W. G., Dammrose, D. and Palmer, C. 1976. Scanning electron microscopy of cell surfaces following removal of extracellular 
material. Anat. Rec. 185: 433–445. [Medline]  [CrossRef]

 7. Ippolito, E., Natali, P. G., Postacchini, F., Accinni, L. and De Martino, C. 1980. Morphological, immunochemical, and biochemical study of rabbit 
achilles tendon at various ages. J. Bone Joint Surg. Am. 62: 583–598. [Medline]  [CrossRef]

 8. Kalson, N. S., Lu, Y., Taylor, S. H., Starborg, T., Holmes, D. F. and Kadler, K. E. 2015. A structure-based extracellular matrix expansion mechanism 
of fibrous tissue growth. eLife 4: e05958. [Medline]  [CrossRef]

 9. Kannus, P. 2000. Structure of the tendon connective tissue. Scand. J. Med. Sci. Sports 10: 312–320. [Medline]  [CrossRef]
 10. Lavagnino, M., Gardner, K. and Arnoczky, S. P. 2013. Age-related changes in the cellular, mechanical, and contractile properties of rat tail tendons. 

Connect. Tissue Res. 54: 70–75. [Medline]  [CrossRef]
 11. Macchiarelli, G. and Ohtani, O. 2001. Endomysium in left ventricle. Heart 86: 416. [Medline]  [CrossRef]
 12. Maeda, E., Ye, S., Wang, W., Bader, D. L., Knight, M. M. and Lee, D. A. 2011. Gap junction permeability between tenocytes within tendon fascicles 

is suppressed by tensile loading. Biomech. Model. Mechanobiol. 11: 439–447.  [Medline]  [CrossRef]
 13. Magnusson, S. P., Hansen, P. and Kjaer, M. 2003. Tendon properties in relation to muscular activity and physical training. Scand. J. Med. Sci. Sports 

13: 211–223. [Medline]  [CrossRef]
 14. Mookhtiar, K. A. and Van Wart, H. E. 1992. Clostridium histolyticum collagenases: a new look at some old enzymes. Matrix Suppl. 1: 116–126. 

[Medline]
 15. Murata, H., Nishizono, H. and Miyoshi, M. 2000. Postnatal development of structure and arrangement of tendon cells. A scanning and transmission 

electron microscope study in the rat calcaneal tendon. Okajimas Folia Anat. Jpn. 77: 77–86. [Medline]  [CrossRef]
 16. Nagy, I. Z., Von Hahn, H. P. and Verzár, F. 1969. Age-related alterations in the cell nuclei and the DNA content of rat tail tendon. Gerontologia 15: 

Fig. 4. Number of cytoplasmic processes (Cp) per cell, thickness of Cp, and length of Cp in the superficial 
digital flexor tendon of 0-, 10- and 20-day-old piglets.

http://www.ncbi.nlm.nih.gov/pubmed/10328939?dopt=Abstract
http://dx.doi.org/10.1006/exnr.1999.7027
http://www.ncbi.nlm.nih.gov/pubmed/9302572?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8459?dopt=Abstract
https://www.ncbi.nlm.nih.gov/pubmed/27565969
http://doi:org/10.1007/s00418-016<2013>1482-z
http://www.ncbi.nlm.nih.gov/pubmed/11037257?dopt=Abstract
http://dx.doi.org/10.2746/042516400777591138
http://www.ncbi.nlm.nih.gov/pubmed/184720?dopt=Abstract
http://dx.doi.org/10.1002/ar.1091850405
http://www.ncbi.nlm.nih.gov/pubmed/6991502?dopt=Abstract
http://dx.doi.org/10.2106/00004623-198062040-00014
http://www.ncbi.nlm.nih.gov/pubmed/25992598?dopt=Abstract
http://dx.doi.org/10.7554/eLife.05958
http://www.ncbi.nlm.nih.gov/pubmed/11085557?dopt=Abstract
http://dx.doi.org/10.1034/j.1600-0838.2000.010006312.x
http://www.ncbi.nlm.nih.gov/pubmed/23186207?dopt=Abstract
http://dx.doi.org/10.3109/03008207.2012.744973
http://www.ncbi.nlm.nih.gov/pubmed/11559682?dopt=Abstract
http://dx.doi.org/10.1136/heart.86.4.416
http://www.ncbi.nlm.nih.gov/pubmed/21706231?dopt=Abstract
https://link.springer.com/article/10.1007%2Fs10237-011-0323-1
http://www.ncbi.nlm.nih.gov/pubmed/12859603?dopt=Abstract
http://dx.doi.org/10.1034/j.1600-0838.2003.00308.x
http://www.ncbi.nlm.nih.gov/pubmed/1336107?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10998940?dopt=Abstract
http://dx.doi.org/10.2535/ofaj1936.77.2-3_77


GROWING TENOCYTES IN THE PIGLET SDFT

1967doi: 10.1292/jvms.17-0436

258–264. [Medline]  [CrossRef]
 17. Nakagawa, Y., Majima, T. and Nagashima, K. 1994. Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles 

tendons. Acta Physiol. Scand. 152: 307–313. [Medline]  [CrossRef]
 18. Pingel, J., Lu, Y., Starborg, T., Fredberg, U., Langberg, H., Nedergaard, A., Weis, M., Eyre, D., Kjaer, M. and Kadler, K. E. 2014. 3-D ultrastructure 

and collagen composition of healthy and overloaded human tendon: evidence of tenocyte and matrix buckling. J. Anat. 224: 548–555. [Medline]  
[CrossRef]

 19. Riley, G. P., Harrall, R. L., Constant, C. R., Chard, M. D., Cawston, T. E. and Hazleman, B. L. 1994. Tendon degeneration and chronic shoulder 
pain: changes in the collagen composition of the human rotator cuff tendons in rotator cuff tendinitis. Ann. Rheum. Dis. 53: 359–366. [Medline]  
[CrossRef]

 20. Roberts, T. J., Marsh, R. L., Weyand, P. G. and Taylor, C. R. 1997. Muscular force in running turkeys: the economy of minimizing work. Science 
275: 1113–1115. [Medline]  [CrossRef]

 21. Squier, C. A. and Bausch, W. H. 1984. Three-dimensional organization of fibroblasts and collagen fibrils in rat tail tendon. Cell Tissue Res. 238: 
319–327. [Medline]  [CrossRef]

 22. Squier, C. A. and Magnes, C. 1983. Spatial relationships between fibroblasts during the growth of rat-tail tendon. Cell Tissue Res. 234: 17–29. 
[Medline]  [CrossRef]

 23. Stanley, R. L., Fleck, R. A., Patterson-Kane, J. C., Goodship, A. E. and Ralphs, J. R. 2006. Confocal microscopy and image analysis of connexin 
plaques in equine tendon. Microsc. Analys. 3: 5–6.

 24. Stanley, R. L., Fleck, R. A., Becker, D. L., Goodship, A. E., Ralphs, J. R. and Patterson-Kane, J. C. 2007. Gap junction protein expression and 
cellularity: comparison of immature and adult equine digital tendons. J. Anat. 211: 325–334. [Medline]  [CrossRef]

 25. Starborg, T., Kalson, N. S., Lu, Y., Mironov, A., Cootes, T. F., Holmes, D. F. and Kadler, K. E. 2013. Using transmission electron microscopy and 
3View to determine collagen fibril size and three-dimensional organization. Nat. Protoc. 8: 1433–1448. [Medline]  [CrossRef]

 26. Ushiki, T. and Murakumo, M. 1991. Scanning electron microscopic studies of tissue elastin components exposed by a KOH-collagenase or simple 
KOH digestion method. Arch. Histol. Cytol. 54: 427–436. [Medline]  [CrossRef]

 27. Wood, L. K. and Brooks, S. V. 2016. Ten weeks of treadmill running decreases stiffness and increases collagen turnover in tendons of old mice. J. 
Orthop. Res. 34: 346–353. [Medline]  [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/5800975?dopt=Abstract
http://dx.doi.org/10.1159/000211694
http://www.ncbi.nlm.nih.gov/pubmed/7872008?dopt=Abstract
http://dx.doi.org/10.1111/j.1748-1716.1994.tb09810.x
http://www.ncbi.nlm.nih.gov/pubmed/24571576?dopt=Abstract
http://dx.doi.org/10.1111/joa.12164
http://www.ncbi.nlm.nih.gov/pubmed/8037494?dopt=Abstract
http://dx.doi.org/10.1136/ard.53.6.359
http://www.ncbi.nlm.nih.gov/pubmed/9027309?dopt=Abstract
http://dx.doi.org/10.1126/science.275.5303.1113
http://www.ncbi.nlm.nih.gov/pubmed/6509510?dopt=Abstract
http://dx.doi.org/10.1007/BF00217304
http://www.ncbi.nlm.nih.gov/pubmed/6640615?dopt=Abstract
http://dx.doi.org/10.1007/BF00217399
http://www.ncbi.nlm.nih.gov/pubmed/17848160?dopt=Abstract
http://dx.doi.org/10.1111/j.1469-7580.2007.00781.x
http://www.ncbi.nlm.nih.gov/pubmed/23807286?dopt=Abstract
http://dx.doi.org/10.1038/nprot.2013.086
http://www.ncbi.nlm.nih.gov/pubmed/1662055?dopt=Abstract
http://dx.doi.org/10.1679/aohc.54.427
http://www.ncbi.nlm.nih.gov/pubmed/25640809?dopt=Abstract
http://dx.doi.org/10.1002/jor.22824

