1	Structural determination, distribution, and physiological actions of ghrelin in the guinea
2	pig
3	
4	
5	Yuji Okuhara ^{1, 2} , Hiroyuki Kaiya ³ , Hiroki Teraoka ¹ and Takio Kitazawa ^{*1}
6	
7	
8	¹ School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501,
9	Japan.
10	² Pathology Research, Safety Research Laboratory, Kissei Pharmaceutical Co., Ltd., 2320-1,
11	Maki, Hotaka, Azumino, Nagano 399-8305, Japan
12	³ Department of Biochemistry, National Cerebral and Cardiovascular Center Research
13	Institute, Suita, Osaka 565-8565, Japan.
14	
15	
16	*Corresponding author: Takio Kitazawa, Ph.D., School of Veterinary Medicine, Rakuno
17	Gakuen University, Ebetsu, Hokkaido 069-8501, Japan.
18	
19	Tel: +81-11-388-4795, Fax: +81-11-387-5890
20	E-mail: tko-kita@rakuno.ac.jp
21	

23 Abstract

24	We identified guinea pig ghrelin (gp-ghrelin), and examined its distribution and
25	physiological actions in the guinea-pig. Gp-ghrelin is a 28-amino acid peptide (GASFR
26	SPEHH SAQQR KESRK LPAKI QPR); seven amino acids are different from that of rat
27	ghrelin at positions 2, 5, 10, 11, 19, 21, and 25, which include the conserved region known in
28	mammals. The third serine residue is mainly modified by <i>n</i> -decanoyl acid. Both gp-ghrelin
29	and rat ghrelin increased intracellular Ca ²⁺ concentration of HEK293 cells expressing guinea
30	pig growth hormone secretagogue receptor 1a (GHS-R1a), and the affinity of gp-ghrelin was
31	slightly higher than that of rat ghrelin. In addition, gp-ghrelin was also effective in CHO cells
32	expressing rat GHS-R1a with similar affinity to that of rat ghrelin. Gp-ghrelin mRNA was
33	predominantly expressed in the stomach, whereas the expression levels in other organs was
34	low. High levels of GHS-R1a mRNA expression were observed in the pituitary, medulla
35	oblongata, and kidney, while medium levels were noted in the thalamus, pons, olfactory bulb,
36	and heart. Immunohistochemistry identified gp-ghrelin-immunopositive cells in the gastric
37	mucosa and pancreas. Intraperitoneal injection of gp-ghrelin increased food intake in the
38	guinea pig. Gp-ghrelin did not cause any mechanical responses in isolated gastrointestinal
39	smooth muscles in vitro, similar to rat ghrelin. In conclusion, the N-terminal structures that
40	are conserved in mammals were different in gp-ghrelin. Moreover, the functional
41	characteristics of gp-ghrelin, other than its distribution, were dissimilar from those in other

 $\mathbf{2}$

42 Rodentia.

43

- 44 Keywords: Guinea pig, Ghrelin, Growth hormone secretagogue receptor 1a (GHS-R1a),
- 45 cDNA cloning, Functional characterization, Tissue distribution

47 **1. Introduction**

Ghrelin is a 28-amino-acid peptide with an *n*-octanoyl modification at the third serine 48residue (Ser-3), and is mainly produced in X/A-like cells in the oxyntic mucosa of the 49stomach. It is an endogenous ligand for growth hormone secretagogue receptor type-1a 50(GHS-R1a) [22, 23]. The modification at Ser-3 is accomplished by ghrelin-O-acyltransferase 5152(GOAT)[54], and is essential for the binding of ghrelin to GHS-R1a and for eliciting its biological activity. The isoform of ghrelin that lacks Ser-3 modification is called des-acyl 53ghrelin or unacylated ghrelin, and is dominant in the stomach and plasma; however, its 54physiological role has not been fully understood yet. Ghrelin was initially known for its 55growth hormone-releasing activity, but accumulating evidence has indicated that it is an 56important regulator of glucose metabolism, endocrine/exocrine, gastrointestinal (GI) and 57cardiovascular functions. In addition, it is a peripheral orexigenic hormone that increases 58body weight by stimulating food intake and decreasing fat utilization [12, 22, 23, 32, 43]. 59Ghrelin has been identified in several mammalian and non-mammalian vertebrates, 60 including fishes and birds [17]. In mammals, the N-terminal 10 amino acid sequence 6162(GSSFLSPEHQ) is identical, along with the conserved amino acids at positions 16 (K), 20 (K), 21(P), 25 (L) and 28 (R) [18]. Since the N-terminal portion (GSSF including acyl 63 modification) is known to be the active core of ghrelin [29], it is thought that the structure of 64ghrelin has been conserved throughout the evolutionary process of the molecule [18]. 65

66	The guinea pig is a species of rodents widely used as an experimental model for studying
67	GI motor function because of the dense network of enteric neurons, easy separation of
68	longitudinal and circular muscles, and high sensitivity to several bioactive substances.
69	Motilin (a ghrelin-related peptide) mRNA has been identified in this species [52], along with
70	the expression of the motilin receptor proteins in the enteric nervous systems [52, 53].
71	However, this is different from that seen in rats and mice [11], where the motilin system
72	(motilin and motilin receptor) is absent, and the ghrelin system is thought to act as a
73	substitute for the motilin system, especially in the regulation of GI motility [7,42]. Our
74	previous study demonstrates that the guinea pig is sensitive to rat ghrelin but not to
75	unacylated rat ghrelin during gastric contraction in vivo through the activation of the
76	capsaicin-sensitive vago-vagal reflex pathway [33]. In addition, we have also identified the
77	GHS-R1a structure in the guinea pig (gpGHS-R1a), which was activated by rat ghrelin [21],
78	suggesting the presence of the ghrelin system in guinea pig. However, the sequence of guinea
79	pig ghrelin has not been identified.
80	Several studies on the distribution of ghrelin have been carried out so far, mainly on rats
81	and mice. Interestingly, the stomach of these animal species, which is the major site of
82	ghrelin production, is morphologically markedly different from those of other mammals. It
83	consists of a fore stomach (squamous mucosa) and a glandular stomach; the fore stomach
84	forms approximately 60% of the total stomach volume [3]. On the other hand, the guinea pig

 $\mathbf{5}$

85	is a monogastric herbivorous animal with a completely glandular stomach [9] and is unable to
86	synthesize vitamin C [36], similar to humans. These differences in gastric morphology and
87	nutritional profiles between the guinea pig and other rodents prompted us to investigate the
88	distribution of ghrelin and its receptor, and to evaluate the functions of ghrelin in guinea pigs.
89	The aim of the present study was to identify the structure of gp-ghrelin and to examine
90	the distribution of ghrelin (as the ligand) and GHS-R1a mRNAs (as the target), and the
91	expression of the ghrelin peptide using molecular biological and immunohistochemical (IHC)
92	approaches. Furthermore, the identified gp-ghrelin peptide was synthetized and its biological
93	activities such as activation of GHS-R1a, regulation of food intake and in vitro GI motility
94	were examined using the homologous system.
94 95	were examined using the homologous system.
94 95 96	were examined using the homologous system. 2. Materials and Methods
94 95 96 97	were examined using the homologous system. 2. Materials and Methods All experiments were performed in accordance with the institutional guidelines for Care
94 95 96 97 98	were examined using the homologous system. 2. Materials and Methods All experiments were performed in accordance with the institutional guidelines for Care and Use of Animals approved by the animal care and use committees of the Rakuno Gakuen
94 95 96 97 98 99	were examined using the homologous system. 2. Materials and Methods All experiments were performed in accordance with the institutional guidelines for Care and Use of Animals approved by the animal care and use committees of the Rakuno Gakuen University, the National Cardiovascular Center, and the Kissei Pharmaceutical Co., Ltd.
94 95 96 97 98 99 99	were examined using the homologous system. 2. Materials and Methods All experiments were performed in accordance with the institutional guidelines for Care and Use of Animals approved by the animal care and use committees of the Rakuno Gakuen University, the National Cardiovascular Center, and the Kissei Pharmaceutical Co., Ltd.
 94 95 96 97 98 99 100 101 	were examined using the homologous system. 2. Materials and Methods All experiments were performed in accordance with the institutional guidelines for Care and Use of Animals approved by the animal care and use committees of the Rakuno Gakuen University, the National Cardiovascular Center, and the Kissei Pharmaceutical Co., Ltd. 2.1. Animals and tissue preparations

103 from Japan SLC, Inc. (Shizuoka, Japan) were used for the molecular biological studies of

104	ghrelin and GHS-R1a mRNAs, and to examine the GI contraction in vitro. Throughout the
105	acclimation and experimental periods, the animals were housed in cages in an air-conditioned
106	animal room (room temperature, 24 \pm 1 °C; relative humidity, 60% \pm 5%; 12:12-h light/dark
107	cycle). After accommodation of over 1 week, they were used for the experiments.
108	For the IHC and food intake studies, male guinea pigs aged 5 weeks were obtained from
109	the same animal breeder (Japan SLC), and housed in cages in an air-conditioned animal room
110	for 1 week (room temperature, $24 \pm 1^{\circ}$ C; relative humidity, 55% \pm 8%; 12:12-h light/dark
111	cycle.). Subsequently, the animals were divided into two groups: feeding experiment group
112	and blood sampling group ($n = 6$ in each). Each animal was kept in an individual cage. A
113	standard diet (LRC-4; Oriental Yeast, Tokyo, Japan) and tap water were available ad libitum
114	throughout the acclimation and experimental periods.
115	
116	2.2 Identification of gp-ghrelin
117	2.2.1. cDNA cloning
118	The full-length of gp-ghrelin cDNA was determined by 3'- or 5'-rapid amplification of
119	the cDNA ends (RACE) by polymerase chain reaction (PCR) using a GeneRacer Kit (Life
120	Technologies, CA, USA). Total RNA was extracted from the glandular stomach with TRIzol
121	reagent (Life Technologies) and stored in RNAlater (Life Technologies).

 $\overline{7}$

- 122 First, we explored the information about the nucleotide sequence of gp-ghrelin (117
- amino acids, 351 bps) in the Ensemble Genome Browser
- 124 (http://www.ensembl.org/Cavia_porcellus/Info/Index) and found a contig,

125 ENSCPOT00000022228.1. The nucleotide sequence of the coding region of gp-ghrelin was

- 126 amplified using a primer set designated by the above information (gpGHRL-s1: 5'-ATG ACC
- 127 TTG GCG GGG ACC ATC TGC-3'; and gpGHRL-AS1: 5'-CTT GTC TGC GGG GGC CTC
- 128 TTC AGC-3'). Total RNA (1 µg) was reverse-transcribed with a GeneRacer 3'-oligo primer
- 129 using QuantiTect RT Kit (QIAGEN GmbH, Hilden, Germany) at a final volume of 20 μl.
- 130 Reverse transcription PCR (RT-PCR) was performed with a template (2 µl), a primer set (10
- 131 pmol/µl) and the HotStar Taq Plus Mix (QIAGEN). The reaction conditions were as follows:
- 132 95 °C for 5 min, subsequent 35 cycles at 95 °C for 0.5 min, 55 °C for 0.5 min, and 72 °C for
- 133 1.5 min, and a final extension at 72 °C for 3 min. The amplified product was sub-cloned into
- 134 the pCRII-TOPO vector (Life Technologies) and the nucleotide sequence was determined by
- 135 automated sequencing (model 3130; Applied Biosystems, CA, USA) according to the
- 136 protocol of the BigDyeTM terminator cycle sequencing kit (Applied Biosystems). Thus, the
- 137 nucleotide sequences of the natural and the deposited were determined, following which the
- 138 primers for the 3'- or 5'-RACE PCR were designed based on the defined nucleotide
- 139 sequence.

140	For the 3'-RACE PCR, the template used in the afore-mentioned experiment was used.
141	Primary PCR was performed with a gene-specific primer (GSP), gpGHRL-s1 (10 pmol/ μ l),
142	and a 3'-primer supplied from the kit using HotStar Taq Plus Mix. The reaction conditions
143	were as follows: 95 °C for 5 min, subsequent 35 cycles at 95 °C for 0.5 min, 58 °C for 0.5
144	min, and 72 °C for 1 min, and a final extension at 72 °C for 3 min. The amplified product was
145	purified by the Wizard PCR preps DNA purification system (Promega, WI, USA), and
146	subjected to a second-round nested PCR. The nested PCR was performed with another GSP,
147	gpGHRL-s2 (5'-ACC ATC TGC AGC CTG TTG CTC CTC-3'), and a 3'-nested primer
148	supplied by the kit under the same conditions described for the primary PCR. A nucleotide
149	sequence of approximately 470 bp was determined.
150	For the 5'-RACE PCR, first-strand cDNAs were synthesized from total RNA (2.5 μ g)
151	obtained from the glandular stomach with oligo- dT_{12-18} primers or an anti-sense GSP
152	(gpGHRL-AS1) used in the previous experiment using the Transcriptor High Fidelity cDNA
153	Synthesis Kit (Roche Diagnostics GmbH, Mannheim, Germany). The primary PCR was run
154	using gpGHRL-AS1, 5'-primer supplied from the kit, and the HotStar Taq Plus Mix under the
155	following amplification conditions: 95 °C for 5 min, subsequent 35 cycles at 95 °C for 0.5
156	min, 57 °C for 0.5 min, and 72 °C for 1 min, and a final extension at 72 °C for 3 min. After
157	the purification of the PCR product, nested PCR was performed using another GSP,
158	gpGHRL-AS2 (5'-CTC TTC AGC CTC TTC TCC AAG GAC-3'), a 5'-nested primer

159	supplied by the kit, and the HotStar Plus Taq Mix under the same conditions as in the primary
160	PCR. The amplicon was obtained from both oligo-dT- and gpGHRL-AS1-originated
161	templates. An approximately 390-bp product was determined. Finally, the nucleotide
162	sequence of the full-length cDNA was determined by assembling the results from the 5'- and
163	3'-RACE PCRs.
164	
165	2.2.2. Ghrelin purification
166	Ghrelin activity during the purification process was monitored by measuring the changes
167	in intracellular Ca ²⁺ concentration in the previously established cell line stably expressing rat
168	GHS-R1a (CHO-GHS-R62)[22].
169	Frozen guinea pig stomach (3.5 g) was boiled in Milli-Q-grade water for 10 min. After
170	cooling, the extracted solution was acidified with acetic acid (AcOH) to a concentration of 1
171	M and homogenized by a polytron homogenizer (Central Scientific Commerce, Inc., Tokyo,
172	Japan). After centrifugation at $13,200 \times g$ for 30 min, the obtained supernatant was purified
173	using Sep-Pak Plus C18 cartridge (Waters, Milford, MA) and eluted in a gradient with 25%
174	to 60% acetonitrile (ACN)/0.1% trifluoroacetic acid (TFA).
175	The resulting fraction was lyophilized and purified by cation-exchange chromatography
176	(SP-Sephadex C-25, H ⁺ -form; GE Healthcare Life Sciences). A successive elution was
177	performed with 1 M AcOH, 2 M pyridine, and 1 M pyridine-AcOH (pH 5.0), yielding SP-I,

178SP-II, and SP-III fractions. The strong basic peptide-enriched SP-III fraction underwent gel-filtration high-performance liquid chromatography (HPLC; TSKgel G2000SW; $21.5 \times$ 179180 300 mm; Tosoh, Tokyo, Japan) with elution using 35% ACN/0.1% TFA. Active fractions assessed by CHO-GHS-R62 were applied to carboxymethyl (CM)-ion-exchange HPLC 181(TSKgel CM-2SW; 4.6×250 mm; Tosoh, Tokyo, Japan). The fractions were separated by 182reverse-phase (RP)-HPLC using a Symmetry C18 column (3.9 x 150 mm; Waters) at a flow 183rate of 1 ml/min under a linear gradient from 10% to 60% ACN/0.1% TFA for 40 min. They 184were then further purified by RP-HPLC using a diphenyl column (2.1 \times 150 mm; 185219TP5125; Vydac, Hesperia, CA) at a flow rate of 0.2 ml/min under a linear gradient from 186 10% to 60% ACN/0.1% TFA for 40 min. Fractions corresponding to each absorbance peak 187were collected. The purified peptide was applied to protein sequencing (model 494HT; 188Applied Biosystems) to analyze the peptide sequence, which was confirmed by referring the 189deduced amino acid sequence of the cDNA. 190

191 The molecular weight of the purified peptide was determined using matrix-assisted laser 192 desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (4800 MALDI 193 TOF/TOFTM instrument; AB SCIEX, MA, USA). Briefly, a part of the purified fractions was 194 spotted on the measure plate together with 1 μ l of saturated α -cyano-4-hydroxycinnamic acid 195 dissolved in 60% ACN/0.1% TFA. Acylation patterns were determined by measuring the 196 difference between the detected molecular mass and the theoretical molecular mass

197	calculated from the amino acid sequence of the purified peptide. The main gp-ghrelin
198	determined was a custom order to Peptide Institute Inc. (Osaka, Japan).
199	
200	2.3. Binding activity of gp-ghrelin to gpGHS-R1a and rat GHS-R1a
201	We examined whether the synthesized gp-ghrelin binds to and activates gpGHS-R1a and
202	rat GHS-R1a. GpGHS-R1a was transiently expressed in human embryonic kidney (HEK) 293
203	cells as described previously [21], whereas rat GHS-R1a was stably expressed in Chinese
204	hamster ovary (CHO) cells (CHO-GHS-R62) [22]. HEK293 and CHO cells were cultured in
205	Dulbecco's Modified Eagle's Medium (DMEM; Gibco TM , Life Technologies, MD, USA, cat.
206	no. 11995-065) and MEM Alpha (Gibco TM , Life Technologies, cat. no. 12571-063),
207	respectively, containing 10% fetal calf serum (FCS) supplemented with antibiotics (10 U/ml
208	penicillin and 100 μ g/ml streptomycin).
209	Cultured HEK293 and CHO cells were plated onto a collagen-coated 96-well black plate
210	and a normal 96-well black plate (Corning Inc., NY, USA) at densities of 3×10^4 cells and 5
211	\times 10 ⁴ per well, respectively. At least 20 h after culturing the cells, cultured medium was
212	aspirated and then 100 μ l fluorescent dye solution containing 4.4 μ M Fluo-4AM (Invitrogen),
213	1% FCS and 1% Powerload Concentrate (Thermo Fisher Scientific) in a working buffer
214	(1xHanks' BSS; Gibco TM , Life Technologies), and 20 mM HEPES buffer containing 250 μ M

215 probenecid (Sigma-Aldrich Chemical, MO, USA) were loaded onto each well. The plate was

216	incubated for 1 h at 37 °C. Samples (120 μ l) containing designated concentrations of ghrelin
217	were prepared with working buffer containing 0.001% Triton X-100. After washing the wells
218	three times with working buffer, changes in the intracellular Ca^{2+} concentrations in the
219	GHS-R1a-expressing cells were measured using FLIPR ^{tetra} (Molecular Devices, CA, USA)
220	after adding 100 µl of designated concentrations of gp-ghrelin or rat ghrelin (Peptide Institute
221	Inc.).
222	
223	2.4. In vitro study for measurement of gastrointestinal contractility
224	2.4.1. Drugs used
225	The administration volume of each drug in the organ bath study was 1 % of the bath
226	volume (5 ml). Acetylcholine chloride (ACh; Wako Pure Chemical Industries, Ltd,
227	Osaka, Japan) was dissolved in distilled water and synthetic gp-ghrelin, whereas rat ghrelin
228	(Peptide Institute Inc. Osaka, Japan) was dissolved in distilled water for the <i>in vitro</i> study.
229	2.4.2. In vitro study
230	Guinea pigs were anaesthetized using pentobarbital sodium (50 mg/kg, i.p., Kyoritsu
231	Seiyaku, Tokyo, Japan), and sacrificed by bleeding from the carotid vein. After midline
232	incision, smooth muscle strips from different parts of the GI tract (stomach, duodenum,
233	jejunum, ileum, and colon) were prepared. The GI strips were suspended vertically in an
234	organ bath (5 ml) to measure the mechanical activity of the longitudinal muscles. We used

235	two kinds of GI preparations: muscle strips with intact mucosa (whole tubular preparation of
236	the intestine), and muscle strips without the mucosa because of the possible action of ghrelin
237	on the neural pathway located in the mucosa [31]. The organ bath contained warm (37 $^{\circ}$ C)
238	Krebs solution: NaCl, 118 mM; KCl, 4.75 mM; MgSO ₄ , 1.2 mM; KH ₂ PO ₄ , 1.2 mM; CaCl ₂ ,
239	2.5 mM; NaHCO ₃ , 25 mM; and glucose, 11.5 mM, equilibrated with 95% $O_2 + 5\% CO_2$ (pH,
240	7.4). Mechanical activity of the muscle preparation was recorded with an isometric force
241	transducer (SB-612T; Nihon Kohden, Tokyo, Japan) and the data obtained were analyzed
242	with a computer-aided analysis system (Power Lab 2/25, Japan Bioresearch center, Nagoya,
243	Japan). Initial load was set at 0.5 g for each preparation. The preparations were rinsed with
244	Krebs solution every 15 min and allowed to equilibrate for 1 h to establish spontaneous
245	contractions. Prior to the addition of gp-ghrelin or rat ghrelin, each strip was subjected to
246	three or four stimulations with 100 μ M ACh until reproducible contractions were observed.
247	To examine the mechanical responses to ghrelins, each ghrelin was applied cumulatively
248	from 0.1 nM to 1 μ M at 3-min intervals, and the evoked responses were measured by the
249	increase in muscle tonus compared with that in the absence of ghrelin. The results indicated
250	the percentage changes of muscle tonus in response to the 100 μ M ACh stimulation.
251	

2.5. Food intake and blood glucose level

253 Gp-ghrelin was dissolved in saline containing 0.1% BSA and the formulations were

254	prepared just before each treatment. The animals were fasted for 16 h before the treatment
255	and injected intraperitoneally with 20 or 80 μ g/kg body weight of gp-ghrelin or an equal
256	volume of saline 1 h after light onset ($n = 6$ each). The doses of ghrelin were determined
257	based on the previous reports in rats [50,51]. The amount of food intake was measured at 2, 4,
258	10, and 24 h after ghrelin injection.
259	Blood samples were collected repeatedly from each animal $(n = 6)$ at 30 min before and 5,
260	30, 60, and 120 min after the ghrelin treatments. Blood glucose concentration was measured
261	to confirm the fasting condition using the 7180 clinical analyzer (Hitachi High-Technologies,
262	Tokyo, Japan).
263	
204	
264	2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig
264 265	2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs
264 265 266	2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pigorgansTotal RNA was extracted separately from 28 tissues or organs obtained from seven guinea
264 265 266 267	 2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs Total RNA was extracted separately from 28 tissues or organs obtained from seven guinea pigs stored in RNAlater, using Trizol reagent. First-strand cDNA was synthesized from 1 μg
264 265 266 267 268	 2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs Total RNA was extracted separately from 28 tissues or organs obtained from seven guinea pigs stored in RNAlater, using Trizol reagent. First-strand cDNA was synthesized from 1 μg total RNA using a QuantiTect RT Kit with oligo-dT₁₂₋₁₈ primer. RT-PCR was performed using
 264 265 266 267 268 269 	 2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs Total RNA was extracted separately from 28 tissues or organs obtained from seven guinea pigs stored in RNAlater, using Trizol reagent. First-strand cDNA was synthesized from 1 μg total RNA using a QuantiTect RT Kit with oligo-dT₁₂₋₁₈ primer. RT-PCR was performed using the LightCycler 480 system (Roche Applied Science, Mannheim, Germany) with
 264 265 266 267 268 269 270 	 2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs Total RNA was extracted separately from 28 tissues or organs obtained from seven guinea pigs stored in RNAlater, using Trizol reagent. First-strand cDNA was synthesized from 1 μg total RNA using a QuantiTect RT Kit with oligo-dT₁₂₋₁₈ primer. RT-PCR was performed using the LightCycler 480 system (Roche Applied Science, Mannheim, Germany) with QuantiFAST SYBR Green PCR Kit (QIAGEN). Quantification of gpGHS-R1a and β-actin
 264 265 266 267 268 269 270 271 	 2.6. Quantification of <i>ghrelin</i> and <i>GHS-R1a</i> mRNA by real-time PCR in guinea pig organs Total RNA was extracted separately from 28 tissues or organs obtained from seven guinea pigs stored in RNAlater, using Trizol reagent. First-strand cDNA was synthesized from 1 µg total RNA using a QuantiTect RT Kit with oligo-dT₁₂₋₁₈ primer. RT-PCR was performed using the LightCycler 480 system (Roche Applied Science, Mannheim, Germany) with QuantiFAST SYBR Green PCR Kit (QIAGEN). Quantification of gpGHS-R1a and β-actin (internal control) for guinea pig was conducted according to the method described in our

273	For ghrelin, a primer set (gpGHRL-s1 and gpGHRL-AS1) that was used for the cloning
274	of the coding region in ghrelin was used for the quantification analysis. The expected size of
275	the amplicon was 351 bp. The reaction mixture consisted of $1 \times$ master mix and 250 nM each
276	of the primer and the template (100 ng total RNA equivalent). The amplification conditions
277	were as follows: 95 °C for 5 min, and subsequent 40 cycles at 95 °C for 10 s and at 60 °C for
278	30 s. For quantification of ghrelin cDNA copy number, a linear regression analysis was
279	performed using serially diluted linearized pCRII vector cloned from the coding region of the
280	gp-ghrelin described in Section 2.2.1. The vectors were linearized by restriction with Xba I.
281	Data were calculated using the 2 nd Derivative Max mode in the LightCycler software. The
282	values were used if the desired sizes of the amplicons were confirmed by 1.5% agarose gel
283	electrophoreses containing ethidium bromide, and a single peak was obtained in the melting
284	curve analysis after quantification analysis.
285	
286	2.7. Immunohistochemical study of ghrelin and GOAT
287	The animals were euthanized by exsanguination via the abdominal aorta under deep
288	anesthesia with 2% isoflurane (Pfizer Japan, Tokyo, Japan). The stomach, intestine, and

289 pancreas were quickly collected and fixed in 10% phosphate-buffered formalin. The tissues

290 were embedded in paraffin, cut into 3-µm-thick sections on a microtome and mounted on

291 gelatin-coated (super-frost) glass slides. The sections were treated with 3% H₂O₂ solution to

292	block endogenous peroxidase, followed by washing in PBS. Specifically, the sections for
293	GOAT immunostaining were pretreated with heat-induced epitope retrieval (microwave oven
294	at 500 W in Target Retrieval Solution; Agilent Technologies, CA, USA) for 15 min. The
295	sections were incubated overnight at 4 $^{\circ}$ C with the primary antibody as follows: anti-rat
296	ghrelin antibody (rabbit polyclonal antibody; 1:3,000; Transgenic Inc., Fukuoka, Japan);
297	anti-human GOAT antibody (goat polyclonal antibody; 1:100; Abcam plc, Cambridge, UK).
298	The sections were incubated in Envision + Dual link System-HRP (Agilent Technologies) for
299	30 min at room temperature, washed with PBS, and stained with 3,3'-diaminobenzidine +
300	Liquid (Agilent Technologies) for 1–3 min. Then, the sections were counter-stained with
301	Mayer's hematoxylin. Control experiments for investigation of specificity of the antibodies
302	were performed by substitution of the primary antibodies with a suitable dilution of normal
303	rabbit or goat serum (Agilent Technologies). When the normal serum was used, there were no
304	remarkable staining of ghrelin or GOAT in this study. Morphometric observation was done
305	using a microscope (BX-53; OLYMPUS, Tokyo, Japan) with a digital camera (DP70;
306	OLYMPUS, Japan).
307	For immunofluorescent double staining of ghrelin and GOAT, sections were prepared as
308	described earlier and incubated for 1 h at room temperature together with the anti-ghrelin and

- anti-GOAT antibodies. The sections were then incubated in the appropriate secondary
- antibodies conjugated with Alexa Fluor 488 (Donkey anti-goat IgG; Abcam plc) and Alexa

311	Fluor 594 (Donkey anti-rabbit IgG; Abcam plc) for 1 h at room temperature. The sections
312	were cover-slipped using Fluoroshield Mounting Medium (Abcam plc). Stained sections
313	were visualized using a fluorescence microscope (IX-71; OLYMPUS) with a digital camera
314	(DP80; OLYMPUS).
315	
316	2.8. Immunoelectron microscopy for ghrelin-immunoreactive cells of the stomach
317	The fundic region of the stomach was cut into small pieces, fixed in Karnovsky fixative
318	for 2 h at 4 °C, and then post-fixed in 1% osmium tetroxide in cacodylate buffer for 1.5 h.
319	After dehydration through a graded series of increasing concentrations of ethanol, the
320	samples were embedded in epoxy resin. Ultra-thin sections were cut, mounted on nickel grids
321	and treated with 5% sodium metaperiodate for 30 min, after which they were washed with
322	distilled water and PBS, and blocked for 60 min using a blocking solution (Protein Block
323	Serum-Free; Agilent Technologies); they were incubated overnight at 4 °C with rabbit
324	polyclonal anti-rat ghrelin antibody (1:6,000; Transgenic Inc.). Next, the sections were
325	incubated for 30 min with biotinylated goat anti-rabbit IgG (1:200; Agilent Technologies) and
326	for 60 min with gold (10 nm)-conjugated streptavidin (BBI Solutions, Cardiff, UK), followed

327 by a 5 min treatment with 1.25% glutaraldehyde/PBS. Immunostained sections were

328 counter-stained with uranyl acetate and lead citrate and examined under a JEOL 1200EX

329 electron microscope (JEOL, Tokyo, Japan). The sizes of 120 ghrelin-containing granules

330	were	measured	in	six	cells.

332	2.10. Statistical analysis
333	Experimental data are expressed as means \pm standard error of mean (SEM) of more than
334	three experiments. The significance of differences between the values was determined at $P <$
335	0.05 using the Student's <i>t</i> -test (unpaired) for single comparisons (two groups) and the
336	Bartlett's test/Dunnett's test or Dunnett's rank test for multiple comparisons (over three
337	groups) using StatLight (ver. 2.10, Yukms, Tokyo, Japan).
338	
339	3. Results
340	3.1. Structure of gp-ghrelin
341	3.1.1. Cloning of gp-ghrelin cDNA
342	We succeeded in amplifying the coding region on gp-ghrelin cDNA using the information
343	provided in the Ensemble Genome Browser; subsequent RACE PCR revealed the complete
344	length of the gp-ghrelin cDNA (Fig. 1; accession #LC322126). The complete pre-proghrelin
345	cDNA was 514 bp long (5'untranslated region, 52 bp; coding region, 354 bp; 3' untranslated
346	region, 108 bp) and contained a putative polyadenylation site (AATAAA) followed by a
347	poly-A tail. The nucleotide sequence of gp-ghrelin had 93% identity with rat, mouse, and dog,

348 89% with pig, 75% with cattle and sheep, and 71.5% with humans, respectively.

349	The deduced amino acid sequence of the coding region consisted of 117 amino acids and
350	the sequence of the putative mature ghrelin peptide consisting of 28 amino acids was
351	predicted as follows: GASFR SPEHH SAQQR KESRK LPAKI QPR. Alternative spliced
352	transcripts lacking CAG corresponding to the 14 th glutamine, known as des-Gln14 ghrelin in
353	humans and mice [13, 14] were also identified (Fig. 1).
354	
355	3.1.2. Isolation and structural determination of gp-ghrelin in stomach
356	The strong basic peptide-enriched SP-III fraction obtained by SP-Sephadex C-25
357	ion-exchange chromatography was isolated by gel-filtration HPLC, which separated the
358	substances based on their molecular weight (Fig. 2A). Intracellular Ca ²⁺ mobilization activity
359	in CHO cells stably expressing rat GHS-R1a (CHO-GHS-R62) were distributed in fractions
360	from 13 to 17. The active fractions were separated by CM-ion-exchange HPLC (Fig. 2B).
361	Apparent ghrelin activities were observed in 20 consecutive fractions from 50 to 69, which
362	were divided into seven groups from "a" to "g" for further purification. Each group was
363	subjected to preparative RP-HPLC, followed by another characteristic RP-HPLC using a
364	diphenyl column. RP-HPLC profiles of the most yielded peptide from Group "e" were
365	illustrated in Figure 2C (preparative RP-HPLC) and Figure 2D (RP-HPLC using a diphenyl
366	column).

367 Peptide sequencing was also performed in this purified peptide from Group "e." The

368	sequence was readable up to the 21 st residue: GAXFRSPEHHXAQQXXEXXXL (X,
369	undetermined residue), and was consistent with the amino acid sequence deduced from the
370	cDNA. The third amino acid residue was not identified, indicating that its side chain might
371	have been modified by some fatty acids. Peaks corresponding to peptide absorbance were
372	manually collected in RP-HPLC using a diphenyl column, and subjected to MALDI-TOF
373	mass analysis.
374	The expected molecular forms were determined based upon the theoretical molecular
375	mass of the 28-amino acid gp-ghrelin (monoisotopic molecular weight = $3,225.73$). The
376	difference in mass units between 3,225.73 and the analyzed value strongly suggests that the
377	hydroxyl group of the third serine is replaced by an acyl moiety. The mass unit of the
378	predominant molecular form in Group "e" was 3,380.8 (M + H^+ form), and the difference
379	was 155.07. This indicates that ghrelin (28 amino acids, 1-28) was attached to the saturated
380	decanoyl moiety (C10:0). Therefore, the structure of the major gp-ghrelin is deduced to be
381	GAS (C10:0) FR SPEHH SAQQR KESRK LPAKI QPR.
382	Molecular weights of other yielded peptides were also measured and the results are
383	shown in Table 1. Unfortunately, no ghrelin activity was seen in the finally isolated fractions

- 384 from Groups "d" and "g," which may be attributed to the low amounts or loss of ghrelin
- peptide due to unknown biochemical properties during the process. In Groups "a," "b," and
- 386 "c," these molecules were deduced as ghrelin [1–27]; des-Arg28 with unsaturated decanoic

387	acid (C10:2) in Group "a," and saturated decanoyl moiety (C10:0) in Groups "b" and "c,"
388	based on the elution position of ion-exchange HPLC. Ghrelin [1–27], as des-Gln14 ghrelin
389	with saturated decanoic acid (C10:0), was detected in Group "f" (Table 1).
390	Multiple comparisons of mature ghrelin sequences among vertebrate species are shown in
391	Figure 3. The N-terminal ten amino acid sequence of mammalian ghrelin (GSSFLSPEHQ) is
392	identical, and amino acids at positions 14 (Q), 15 (R), 16 (K), 17 (E), 20 (K), 21(P), 27 (P),
393	and 28(R) are conserved among the mammalian ghrelin identified so far [17,18]. Gp-ghrelin
394	consisted of 28 amino acids (GASFR SPEHHSAQQR KESRKLPAKI QPR), out of which
395	Ser-3 has been modified by <i>n</i> -decanoic acid, as shown earlier. Seven amino acids were
396	different from rat ghrelin at positions 2, 5, 10, 11, 19, 21, and 25 (Fig. 3). The amino acid at
397	position 21, one of the conserved amino acids among mammals, was changed from Pro to Ile.
398	
399	3.2. Effects of gp-ghrelin on cells expressing gpGHS-R1a or rat GHS-R1a
400	Gp-ghrelin and rat ghrelin activated HEK293 cells that transiently expressed gpGHSR-R1a
401	with increased intracellular Ca ²⁺ concentrations in a concentration-dependent manner (Fig.
402	4A). The maximum responses of both ghrelins were almost the same; nevertheless, the EC_{50}
403	of gp-ghrelin (1.65 nM) was slightly lower than that of rat ghrelin (4.3 nM). Similarly,
404	gp-ghrelin and rat ghrelin also activated the CHO cells stably expressing rat GHS-R1a in a
405	concentration-dependent manner (Fig. 4B). The maximal responses of both ghrelin were

406 almost the same, but the EC_{50} of gp-ghrelin (2.4 nM) was slightly lower than that of rat 407 ghrelin (9.2 nM).

408

409 **3.3. Distribution of** *ghrelin* and *GHS-R1a* mRNAs

410	As indicated in Figure 5A, ghrelin mRNA was highly expressed in the fundus and body
411	of the stomach. Low expression was observed in the olfactory bulb, heart (ventricle and
412	atrium), caecum, colon (proximal), and liver, while the expression levels in other organs were
413	extremely low.
414	The expression pattern of gpGHS-R1a mRNA was different from that of ghrelin mRNA
415	(Fig. 5B). High expression levels (relative expression level to β -action, above 0.1) were
416	observed in the pituitary, medulla oblongata, and kidney, whereas the expression levels were
417	low (relative expression level from 0.01 to 0.1) in the thalamus, pons, olfactory bulb, and
418	heart (ventricle and atrium); the remaining organs (below 0.01) showed negligible levels of
419	expression.
420	

421 **3.4. Immunohistochemical detection of ghrelin and GOAT**

422 A comparison of amino acid sequences indicated that rat ghrelin had a high identity with 423 gp-ghrelin, as a result of which an IHC study was conducted using anti-rat ghrelin polyclonal 424 antibody. Ghrelin-immunopositive (ip) cells were observed in the mucosal layer in all regions

425	of the stomach (Fig. 6A); cardia (Fig. 6B), body-lesser curvature (Fig. 6C), body-greater
426	curvature (Fig. 6D), and pylorus (Fig. 6E). In the mucosal layer, ghrelin-ip cells were mainly
427	observed in the glandular bases of the body of the fundic and the pyloric glands. These
428	ghrelin-ip cells did not have a luminal connection, thereby exhibiting the morphology of a
429	closed-type cell. The gastric region with the highest number of ghrelin-ip cells was the
430	body-lesser curvature ($64.4 \pm 4.5 \text{ cells/mm}^2$, n = 9), followed by the body-greater curvature
431	$(29.9 \pm 2.5 \text{ cells/mm}^2)$, the cardia $(20.1 \pm 1.4 \text{ cells/mm}^2)$, and the pylorus $(14.6 \pm 2.4 \text{ cells/mm}^2)$
432	cells/mm ²). Although ghrelin-ip cells were also observed in the duodenum, the numbers were
433	quite low (2.5 \pm 1.2 cells/mm ²) when compared with those of the stomach. The ghrelin-ip
434	cells in the duodenum were also closed-type. No ghrelin-ip cells were found in the ileum,
435	cecum and colon.
436	On the other hand, in the pancreas, ghrelin-ip cells were observed in endocrine cells
437	within the Langerhans islets (Fig. 6F), but not in the exocrine gland cells. No ghrelin-ip cells
438	were found in the other organs (brain, heart, lung, liver, spleen, and kidney) of the guinea pig
439	(data not shown).
440	GOAT-ip cells were observed in the mucosal layer in all regions of the stomach, similar to
441	the ghrelin-ip cells (Fig. 7A). In addition, a certain number of GOAT-ip cells were also
442	observed in the duodenal mucosa (Fig. 7E). To determine whether GOAT were co-labeled
443	with ghrelin-ip cells, double staining with GOAT and ghrelin was performed. Almost all

444	GOAT-ip cells in the stomach were stained with ghrelin (Fig. 7D). However, a few number of
445	GOAT-ip cells in the duodenum did not show ghrelin immunoreactivity (Fig. 7H). GOAT-ip
446	cells were not observed in any region of the pancreas, including the Langerhans islets (data
447	not shown).
448	
449	3.5. Immunoelectron microscopy for ghrelin-immunoreactive cells in the stomach
450	Immunoelectron microscopic observations of the fundic gland revealed the localization of
451	immunogold staining for ghrelin in round and compact electron-dense granules in the
452	endocrine cells (Fig. 8). The endocrine cells were small, round to ovoid in shape with many
453	granules in the cytoplasm, and were positioned close to the capillaries. An accurate size
454	analysis of the ghrelin-containing granules showed a mean diameter of 174.1 ± 7.7 nm (n =
455	120 granules).
456	
457	3.6. Effects of gp-ghrelin on GI contractility in isolated muscle strips of guinea pig
458	Gp-ghrelin did not cause any mechanical responses (0.1 nM–1 μ M) in the mucosa-intact
459	or mucosa-removed gastric antral circular muscle strips (Fig. 9A). Rat ghrelin was also
460	ineffective in eliciting any mechanical responses in both types of preparations (Fig. 9A). The
461	effects of gp-ghrelin in the ileal longitudinal muscle strips and whole ileum are shown in
462	Figure 9B. Both muscle preparations were insensitive to any concentration of gp-ghrelin or

463	rat ghrelin (Fig. 9B). The whole duodenal preparation was also examined but no effect was
464	seen at any of the concentrations of gp-ghrelin; the relative changes in muscle tonus were
465	$2.6\% \pm 2.2\%$ (0.1 nM), $6.2\% \pm 3.7\%$ (1 nM), $8.1\% \pm 5.2\%$ (10 nM), $12.4\% \pm 8.5\%$ (100 nM),
466	and 13% \pm 12.3% (1 $\mu M;$ n = 4). Muscle tonus in the presence of 1 μM gp-ghrelin was not
467	significantly different from that of the control. The effects of gp-ghrelin and rat ghrelin on the
468	longitudinal muscle strips from proximal and distal colon are shown in Figure 9C. Both
469	gp-ghrelin and rat ghrelin failed to cause any significant mechanical responses in the colonic
470	preparations.
471	
472	3.7. Effects of gp-ghrelin on food intake and blood glucose level
472 473	3.7. Effects of gp-ghrelin on food intake and blood glucose level The effect of intraperitoneal administration of gp-ghrelin on food intake was examined.
472473474	3.7. Effects of gp-ghrelin on food intake and blood glucose levelThe effect of intraperitoneal administration of gp-ghrelin on food intake was examined.As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs was
 472 473 474 475 	3.7. Effects of gp-ghrelin on food intake and blood glucose levelThe effect of intraperitoneal administration of gp-ghrelin on food intake was examined.As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs wassignificantly increased when compared to the saline-treated animals. The stimulatory effect
 472 473 474 475 476 	3.7. Effects of gp-ghrelin on food intake and blood glucose levelThe effect of intraperitoneal administration of gp-ghrelin on food intake was examined.As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs wassignificantly increased when compared to the saline-treated animals. The stimulatory effectbegan within 2 h after administration and continued until over 24 h.
 472 473 474 475 476 477 	 3.7. Effects of gp-ghrelin on food intake and blood glucose level The effect of intraperitoneal administration of gp-ghrelin on food intake was examined. As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs was significantly increased when compared to the saline-treated animals. The stimulatory effect began within 2 h after administration and continued until over 24 h. Blood glucose concentrations in serum were increased following gp-ghrelin treatments
 472 473 474 475 476 477 478 	 3.7. Effects of gp-ghrelin on food intake and blood glucose level The effect of intraperitoneal administration of gp-ghrelin on food intake was examined. As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs was significantly increased when compared to the saline-treated animals. The stimulatory effect began within 2 h after administration and continued until over 24 h. Blood glucose concentrations in serum were increased following gp-ghrelin treatments when compared to saline treatment (Fig. 10B). The effects were noted 30 min after gp-ghrelin
 472 473 474 475 476 477 478 479 	 3.7. Effects of gp-ghrelin on food intake and blood glucose level The effect of intraperitoneal administration of gp-ghrelin on food intake was examined. As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs was significantly increased when compared to the saline-treated animals. The stimulatory effect began within 2 h after administration and continued until over 24 h. Blood glucose concentrations in serum were increased following gp-ghrelin treatments when compared to saline treatment (Fig. 10B). The effects were noted 30 min after gp-ghrelin injection (20 µg/kg). Obvious dose-dependent effects were seen 120 min after 20 or 80 µg/kg
 472 473 474 475 476 477 478 479 480 	3.7. Effects of gp-ghrelin on food intake and blood glucose level The effect of intraperitoneal administration of gp-ghrelin on food intake was examined. As shown in Figure 10A, the amount of food intake by ghrelin-treated guinea pigs was significantly increased when compared to the saline-treated animals. The stimulatory effect began within 2 h after administration and continued until over 24 h. Blood glucose concentrations in serum were increased following gp-ghrelin treatments when compared to saline treatment (Fig. 10B). The effects were noted 30 min after gp-ghrelin injection (20 µg/kg). Obvious dose-dependent effects were seen 120 min after 20 or 80 µg/kg gp-ghrelin injection.

4. Discussion

484	The ghrelin system (ghrelin and GHS-R1a) works as a physiological regulator of GI,
485	cardiovascular, endocrine, and exocrine functions, as well as glucose metabolism in
486	vertebrates [12, 22, 23, 32, 43]. Many studies have focused on the ghrelin system in mice and
487	rats, but not in guinea pigs, well-used laboratory rodents. Previously, we identified
488	gpGHS-R1a and reported its characteristics in the GI tract of guinea pig [21]. A genomic
489	project on guinea pigs is in progress, but the structure of endogenous ghrelin had not been
490	clarified yet.
491	In the present study, we determined the structure of gp-ghrelin by peptide purification from
492	stomach extracts, in combination with its cDNA cloning. It presented as a 28-amino acid
493	peptide with a decanoyl modification at Ser-3. The N-terminal 10-amino acid sequence
494	(GSSFL SPEHQ) of mammalian ghrelin is highly conserved and is identical among all
495	mammals known so far [17,18]. However, three amino acids at positions 2, 5, and 10 in the
496	gp-ghrelin region (GASFRSPEHH) were changed from Ser to Ala, Leu to Arg, and Gln to
497	His, respectively. Furthermore, an additional four amino acids at positions 11, 19, 21, and 25
498	were found to be different from those of rats and mice (Fig. 3). Eight amino acids in the
499	guinea pig differed from those in dog, pig, and human, whereas fourteen amino acids were
500	dissimilar to those in cattle and sheep. As guinea pigs belong to the order of Rodentia, their

501	structural homology is very high to that of rats and mice. From a food habit point of view, the
502	guinea pig is an herbivorous animal; however, it is interesting to note that its homology is
503	very different from that of cattle and sheep, suggesting a low correlation between ghrelin
504	structure and food habits.
505	Functional analysis of gp-ghrelin with gpGHS-R1a or rat GHS-R1a revealed that it was
506	capable of increasing intracellular Ca ²⁺ concentrations in GHS-R1a-expressing cells, and the
507	affinity was slightly higher than that of rat ghrelin. In the N-terminal conserved region, the
508	sequence created by the first four amino acids (GSSF) with acyl modification (active core of
509	ghrelin) is known to be the minimum unit required for biological activity [29]. It is interesting
510	to note that gp-ghrelin also activated rat GHS-R1a with a similar concentration-response
511	relationship as that of rat ghrelin; nevertheless, a considerable number of amino acids were
512	found to be different within the N-terminal region. These findings suggest that substantial
513	amounts of changes in the amino acid sequence, including that in the N-terminal structure of
514	gp-ghrelin, do not conspicuously affect the binding affinity and biological activity of ghrelin
515	to mammalian GHS-R1a.
516	Gp-ghrelin has been predominantly modified by <i>n</i> -decanoic acid in the present study.
517	Although octnoyl modification is common in most of vertebrates possessing ghrelin [17, 18],
518	a similar dominant decanoyl modification of ghrelin has been reported in the teleost, tilapia
519	[16]. We cannot completely exclude the possibility that octanoyl ghrelin was degraded

520	during the purification process. However, our preliminary data showed that in contrast
521	to decanoyl ghrelin, octanoyl ghrelin could not be detected in tissue extracts of the
522	stomach by radioimmunoassay. This fact strongly suggests that decanoyl ghrelin is
523	dominant molecular form in guinea pig stomach. The sources and mechanisms of ghrelin
524	modification have gradually been clarified; ingested fatty acids are used in mammals, birds,
525	and fish [15, 35, 56], while GOAT preferably modifies C6 rather than C8 to ghrelin [24].
526	However, the reason why ghrelin is predominantly modified by decanoic acid in the guinea
527	pig remains unclear.
528	High expression levels of <i>ghrelin</i> mRNA were observed in the stomach of guinea pigs,
529	similar to that in other mammals [4, 17, 23]. In the present study, immunohistochemistry
530	revealed the presence of ghrelin-ip cells in the mucosal layer, especially in the lesser and
531	greater curvatures of the gastric body, similar to that observed in humans [46], rats [4,25],
532	mice, hamsters [55], dogs [39], horses, cows, and pigs [10]. In addition, as reported in the rat
533	stomach [40] and chicken proventriculus [49], the ghrelin-ip cells in the stomach and
534	duodenum were of the closed-type. Ghrelin-ip cells lacking contract with intestinal lumen is
535	thought that the endocrine of ghrelin is regulated by neural and hormonal stimulations but not
536	by stimulations from the lumen. Although ghrelin was not detected [25] or was infrequently
537	observed in the pyloric regions in rats [4], a certain number of ghrelin-ip cells were seen in
538	this region in the guinea pig. The presence of moderate numbers of ghrelin-ip cells have been

539	reported in the pyloric region of pigs [10]. Thus, the species-dependent distribution of
540	ghrelin-ip cells in the pyloric region may reflect the differences in gastric structure, food
541	habits (herbivore), and species-related ghrelin functions.
542	Electron microscopic observation showed that the size and the ultrastructural features of
543	the ghrelin-ip granules in guinea pig were similar to those of X/A-like cells in rats [4, 47],
544	mice, hamsters [55], dogs, and humans [39]. The results of the present study indicated that
545	although the distribution of ghrelin-ip cells in the stomach of the guinea pig was slightly
546	different from that in rats and mice, the main distribution pattern and ultrastructural
547	characteristics were almost the same.
548	GOAT is the enzyme that post-translationally modifies Ser-3 of unacylated ghrelin with
549	octanoic acid [54]. GOAT mRNA and protein were detected in identical mucosal oxyntic cells
550	containing ghrelin in the gastric mucosa of rats [41] and pigs [27]. In the guinea pig stomach,
551	GOAT immunoreactivity was found in the ghrelin-ip cells, implying the co-localization of
552	both molecules in the gastric mucosal cells; thus, there is a possibility that GOAT participates
553	in the acylation of ghrelin, as has been observed previously in rats [41] and pigs [27].
554	However, GOAT-ip cells without ghrelin immunoreactivity were found in the duodenum of
555	the guinea pig. Such cells have also been reported in mouse stomach and rat duodenum [41,
556	44]. These results suggest physiological roles of GOAT other than ghrelin acylation, as shown

in the study where phenotypes of GOAT knockout mice were different from those of ghrelinknockout mice [19].

559	GHS-R1a mRNA is distributed heterogeneously among the organs of the guinea pig,
560	indicating the multi-functionality of ghrelin. High levels of GHS-R1a mRNA expression were
561	observed in the pituitary, medulla oblongata, heart, liver, and kidney. The high expression of
562	GHS-R1a in the pituitary was similar to that in rats, suncus, and chickens [8, 21, 22, 45], and
563	suggests the regulation of pituitary endocrine function, such as growth hormone release [23].
564	Expression levels of GHS-R1a in the medulla oblongata, center of autonomic nerves, heart,
565	and kidney suggest that ghrelin affects the regulation of cardiovascular functions such as
566	heart contractility, heart rate, blood pressure, and blood flow [23, 26]. In the guinea pig,
567	ghrelin has been reported to regulate the tonus of the renal blood vessels [6].
568	Exogenous gp-ghrelin induced a significant increase in food intake and blood glucose level
569	in the guinea pig, as reported in other species [2, 5, 34]. Exogenous ghrelin elevates blood
570	glucose levels in humans and rodents, and the hyperglycemic effect is responsible for the
571	reduction of plasma insulin levels through ghrelin-induced attenuation of Ca ²⁺ signaling in
572	pancreatic β -cells [5]. In the guinea pig, ghrelin immunoreactivity was found in the
573	Langerhans islets of the pancreas, as reported in rats [38, 48]. Although GOAT-ip cells were
574	not found in the islets of the guinea pig in this study, it is reported that detection of the
575	proteins (ghrelin and GOAT) is difficult in the tissues except for stomach and intestine where

576	expression levels of the proteins are high [19]. However GOAT immunoreactivity has been
577	reported in the islet cells of other rodents [1, 30], therefore sensitive detection methods for
578	mRNA would be possible to detect the GOAT expression in the islet of guinea pig. The
579	ghrelin and GOAT mRNAs are demonstrated to be co-expressed in the porcine pancreas [27].
580	Considering these results, the closed localization of ghrelin and insulin secretory cells
581	$(\beta$ -cells) in the guinea pig indicates the regulation of insulin release by endogenous ghrelin in
582	a paracrine manner. Since plasma insulin concentrations were not measured in this study, we
583	were unable to investigate the relationship between insulin and exogenous ghrelin.
584	Ghrelin forms a peptide family with motilin (a mediator of interdigestive motor
585	contraction) [2, 37]. Therefore, the GI-motor-stimulating actions of ghrelin have been the
586	focus of several studies, which have demonstrated that ghrelin stimulates GI motility both in
587	vivo and in vitro in mice and rats [7, 20, 28]. Previously, we reported that rat ghrelin did not
588	cause the contraction of isolated GI strips in guinea pig [21]. One plausible reason for this
589	insensitivity to rat ghrelin might be the structural differences in ghrelin between rats and
590	guinea pigs. However, in the present study, homologous gp-ghrelin also proved ineffective in
591	causing any contractions in the isolated guinea pig GI preparations, similar to the rat ghrelin.
592	This finding suggests that the ineffectiveness of rat ghrelin in the guinea pig GI tract is not
593	due to structural differences, but due to the low expression levels of GHS-R1a in the GI tract
594	of the guinea pig. In the suncus, it has been suggested that ghrelin acts on intrinsic primary

afferent neurons in the mucosal layer [31]; however, in the current study, gp-ghrelin wasfound to be ineffective in the mucosa-intact GI strips.

597 In conclusion, to our best knowledge, this is the first comprehensive description of the peptide structure, tissue distribution, and functions of ghrelin in a rodent, especially the 598guinea pig. Even though gp-ghrelin has unique N-terminal structural features when compared 599600 to other mammalian ghrelin, it has a functional relationship with gpGHS-R1a and rat GHS-R1a, and fully activates the two receptors. In addition, its distribution, localization, and 601 602 morphological characterization in the producing cell was similar to that in other rodents. 603 However, in spite of its stimulatory effect on feeding, no marked effects were observed on the GI tract *in vitro*. This is different from other rodents such as mice and rats, and may reflect 604 605 upon the evolution process of the ghrelin system and the feeding habit. 606 Acknowledgments 607 This study was partly supported by JSPS-Japan KAKENHI Grant number 26440169 to 608

- T.K. and Grant number 26440174 to H.K. and by Grants-in-Aid to Cooperative Research
- 610 from Rakuno Gakuen University 2014 (2014-14). We are grateful to Mrs. Azumi Ohyama,
- 611 Mrs. Sayuri Endo, and Mrs. Yoshimi Tsukahara for their excellent technical assistance.

612 References	
----------------	--

614	1.	An W, Li Y, Xu G, Zhao J, Xiang X, Ding L et. al., Modulation of ghrelin
615		O-acyltransferase expression in pancreatic islets. Cell Physiol Biochem. 2010; 26:
616		707-16.
617		
618	2.	Asakawa A, Inui A, Kaga T, Yuzuriha H, Nagata T, Ueno N, et al. Ghrelin is an
619		appetite-stimulatory signal from stomach with structural resemblance to motilin.
620		Gastroenterology 2001; 120: 337-45.
621		
622	3.	Brown HR, Hardisty JF. Oral cavity, esophagus and stomach. In: Boorman GA, Eustis
623		SL, Elwell MR, et al. editors. Pathology of the Fischer rat, San Diego: Academic Press;
624		1990, p. 9–30.
625		
626	4.	Date Y, Murakami N, Kojima M, Kuroiwa T, Matsukura S, Kangawa K, et al. Central
627		effects of a novel acylated peptide, ghrelin, on growth hormone release in rats. Biochem
628		Biophys Res Commun 2000; 275: 477-80.
629		
630	5.	Dezaki K, Hosoda H, Kakei M, Hashiguchi S, Watanabe M, Kangawa K, et al.
631		Endogenous ghrelin in pancreatic islets restricts insulin release by attenuating Ca2+
632		signaling in beta-cells: implication in the glycemic control in rodents. Diabetes 2004; 53:
633		3142-51.
634		
635	6.	Dimitrova DZ, Mihov DN, Wang R, Hristov KL, Rizov LI, Bolton TB, et al. Contractile
636		effect of ghrelin on isolated guinea pig renal arteries. Vasc Pharmacol 2007; 47: 31-40.

638	7.	Fujino K, Inui A, Asakawa A, Kihara N, Fujimura M, Fujimiya M, Ghrelin induces
639		fasted motor activity of the gastrointestinal tract in conscious fed rats. J Physiol 2003;
640		550: 227-40.
641		
642	8.	Geelissen S, Beck IM, Darras VM, Kühn E, van der Geyten S. Distribution and
643		regulation of chicken growth hormone secretagogue receptor isoforms. Gen Comp
644		Endocrinol 2003; 134: 167-74.
645		
646	9.	Hargaden M, Singer L. Anatomy, Physiology, and Behavior-Chapter 20. In: Suckow MA,
647		Stevens KA, Wilson RP, editors. The laboratory rabbit, guinea pig, hamster, and other
648		rodents. London: Academic Press; 2012, p. 575-602.
649		
650	10.	Hayashida T, Murakami K, Mogi K, Nishihara M, Nakazato M, Mondal MS, et al.
651		Ghrelin in domestic animals: distribution in stomach and its possible role. Domestic
652		Anim Endocrinol. 2001; 21: 17-24.
653		
654	11.	He J, Irwin DM, Chen R, Zhang YP. Stepwise loss of motilin and its specific receptor
655		genes in rodents. J Mol Endocrinol. 2010; 44: 37-44.
656		
657	12.	Hosoda H, Kojima M, Kangawa K. Biological, physiological, and pharmacological
658		aspects of ghrelin. J Pharmacol Sci. 2006; 100: 398-410.
659		
660	13.	Hosoda H, Kojima M, Matsuo H, Kangawa K. Purification and characterization of rat
661		des-Gln14-Ghrelin, a second endogenous ligand for the growth hormone secretagogue
662		receptor. J Biol Chem. 2000; 275: 21995-2000.

664	14.	Hosoda H, Kojima M, Mizushima T, Shimizu S, Kangawa K. Structural divergence of
665		human ghrelin. Identification of multiple ghrelin-derived molecules produced by
666		post-translational processing. J Biol Chem. 2003; 278: 64-70.
667		
668	15.	Kaiya H, Andoh T, Ichikawa T, Amiya N, Matsuda K, Kangawa K, et al. Determination
669		of ghrelin structure in the Barfin Flounder (Verasper moseri) and involvement of
670		ingested fatty acids in ghrelin acylation. Front Endocrinol (Lausanne). 2013; 4: 117.
671		
672	16.	Kaiya H, Kojima M, Hosoda H, Riley LG, Hirano T, Grau EG, et al. Identification of
673		tilapia ghrelin and its effects on growth hormone and prolactin release in the tilapia,
674		Oreochromis mossambicus. Comp Biochem Physiol B Biochem Mol Biol. 2003; 135:
675		421-9.
676		
677	17.	Kaiya H, Miyazato M, Kangawa K, Peter RE, Unniappan S. Ghrelin: A multifunctional
678		hormone in non-mammalian vertebrates. Comp Biochem Physiol 2008; A149: 109-28.
679		
680	18.	Kaiya H, Miyazato M, Kangawa K. Recent advances in the phylogenetic study of ghrelin.
681		Peptides 2011; 32: 2155-74.
682		
683	19.	Kang K, Zmuda E, Sleeman MW. Physiological role of ghrelin as revealed by the ghrelin
684		and GOAT knockout mice. Peptides 2011; 32: 2236-41.
685		
686	20.	Kitazawa T, De Smet B, Verbeke K, Depoortere I, Peeters TL. Gastric motor effects of
687		peptide and non-peptide ghrelin agonists in mice in vivo and in vitro. Gut 2005; 54:
688		1078-84.

690	21.	Kitazawa T, Nakamura T, Saeki A, Teraoka H, Hiraga T, Kaiya H. Molecular
691		identification of ghrelin receptor (GHS-R1a) and its functional role in the gastrointestinal
692		tract of the guinea pig. Peptides 2011; 32: 1876-86.
693		
694	22.	Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a
695		growth-hormone-releasing acylated peptide from stomach. Nature 1999; 402: 656-60.
696		
697	23.	Kojima M, Kangawa K. Ghrelin: structure and function. Physiol Rev. 2005; 85: 495-522.
698		
699	24.	Kojima M, Hamamoto A, Sato T Ghrelin O-acyltransferase (GOAT), a specific enzyme
700		that modifies ghrelin with a medium-chain fatty acid. J Biochem. 2016; 160: 189-194.
701		
702	25.	Li J, Yi SQ, Wang HX, Yi N, Ogawa Y, Ozaki N, Itoh M. Immunolocalization of ghrelin
703		in the stomach of Sprague-Dawley rat. Anat Histol Embryol. 2011; 40: 95-9.
704		
705	26.	Lilleness BM, Frishman WH. Ghrelin and the cardiovascular system. Cardiol Rev. 2016;
706		24: 288-97.
707		
708	27.	Lin T, Meng Q, Sui D, Peng D, Li Y, Liu X, et al. Molecular cloning and expression
709		analysis of porcine ghrelin o-acyltransferase. Biochem Gene. 2011; 249: 576-86.
710		
711	28.	Masuda Y, Tanaka T, Inomata N, Ohnuma N, Tanaka S, Itoh Z, et al. Ghrelin stimulates
712		gastric acid secretion and motility in rats. Biochem Biophys Res Commun 2000; 276:
713		905–8.
714		

715	29.	Matsumoto M, Hosoda H, Kitajima Y, Morozumi N, Minamitake Y, Tanaka S, et al.
716		Structure-activity relationship of ghrelin: pharmacological study of ghrelin peptides.
717		Biochem Biophys Res Commun. 2001; 287: 142-6.
718		
719	30.	Mohan H, Gasner M, Ramesh N, Unniappan S. Ghrelin, ghrelin-O-acyl transferase,
720		nucleobindin-2/nesfatin-1 and prohormone convertases in the pancreatic islets of
721		Sprague Dawley rats during development. J Mol Histol. 2016; 47:325-36.
722		
723	31.	Mondal A, Aizawa S, Sakata I, Goswami C, Oda S, Sakai T. Mechanism of
724		ghrelin-induced gastric contractions in Suncus murinus (house musk shrew):
725		involvement of intrinsic primary afferent neurons. PLoS One 2013; 8: e60365.
726		
727	32.	Müller TD, Nogueiras R, Andermann ML, Andrews ZB, Anker SD, Argente J. et al.
728		Ghrelin. Mol Metab. 2015;4:437-60.
729		
730	33.	Nakamura T, Onaga T, Kitazawa T. Ghrelin stimulates gastric motility of the guinea-pig
731		through activation of a capsaicin-sensitive neural pathway: in vivo and in vitro functional
732		studies. Neurogastroenterol Motil 2010; 22: 446-52.
733		
734	34.	Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K et al. A role for
735		ghrelin in the central regulation of feeding. Nature. 2001; 409: 194-8.
736		
737	35.	Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, Yanase T, Nawata H,
738		Kangawa K, Kojima M. Ingested medium-chain fatty acids are directly utilized for the
739		acyl modification of ghrelin. Endocrinology. 2005; 146: 2255-64.
740		

741	36.	Nishikimi M, Kawai T, Yagi K. Guinea pigs possess a highly mutated gene for
742		L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis
743		missing in this species. J Biol Chem. 1992; 267: 21967-72.
744		
745	37.	Peeters TL. Ghrelin: a new player in the control of gastrointestinal functions. Gut. 2005;
746		54: 1638-49.
747		
748	38.	Raghay K, Gallego R, Scoazec JY, Garcia-Caballero T, Morel G. Different ghrelin
749		localization in adult human and rat endocrine pancreas. Cell Tissue Res 2013; 352:
750		487-94.
751		
752	39.	Rindi G, Necchi V, Savio A, Torsello A, Zoli M, Locatelli V, et al. Characterization of
753		gastric ghrelin cells in man and other mammals: studies in adult and fetal tissues.
754		Histochem Cell Biol. 2002; 117: 511-9.
755		
756	40.	Sakata I, Nakamura K, Yamazaki M, Matsubara M, Hayashi Y, Kangawa K, et al.
757		Ghrelin-producing cells exist as two types of cells, closed-and opened-type cells, in the
758		rat gastrointestinal tract. Peptides. 2002; 23: 531-6.
759		
760	41.	Sakata I, Yang J, Lee CE, Osborne-Lawrence S, Rovinsky SA, Elmquist JK, et al.
761		Colocalization of ghrelin O-acyltransferase and ghrelin in gastric mucosal cells. Am J
762		Physiol Endocrinol Metabol 2009; 297: E134-41.
763		
764	42.	Sanger GJ, Holbrook JD, Anrews PL. The translational value of rodent gastrointestinal
765		functions: a cautionary tale. Trends Pharmacol. Sci., 2011; 32: 402-409.
766		

767	43.	Sato T, Nakamura Y, Shiimura Y, Ohgusu H, Kangawa K, Kojima M. Structure,		
768		regulation and function of ghrelin. J Biochem. 2012;151:119-28.		
769				
770	44.	Stengel A, Goebel M, Wang L, Taché Y, Sachs G, Lambrecht NW. Differential		
771		distribution of ghrelin-O-acyltransferase (GOAT) immunoreactive cells in the mouse and		
772		rat gastric oxyntic mucosa. Biochem Biophy Res Commun 2010; 392: 67-71.		
773				
774	45.	Suzuki A, Ishida Y, Aizawa S, Sakata I, Tsutsui C, Mondal A, et al. Molecular		
775		identification of GHS-R and GPR38 in Suncus murinus. Peptides 2012; 36: 29-38.		
776				
777	46.	Tanaka-Shintani M, Watanabe M. Distribution of ghrelin-immunoreactive cells in human		
778		gastric mucosa: comparison with that of parietal cells. J Gastroenterol 2005; 40: 345-9.		
779				
780	47.	Tomasetto C, Karam SM, Ribieras S, Masson R, Lefèbvre O, Staub A, et al.		
781		Identification and characterization of a novel gastric peptide hormone: the motilin-related		
782		peptide. Gastroenterology 2000; 119: 395-405.		
783				
784	48.	Volante M, AllÌa E, Gugliotta P, Funaro A, Broglio F, Deghenghi R, et al. Expression of		
785		ghrelin and of the GH secretagogue receptor by pancreatic islet cells and related		
786		endocrine tumors. J Clin Endocrinol Metab. 2002; 87: 1300-8.		
787				
788	49.	Wada R, Sakata I, Kaiya H, Nakamura K, Hayashi Y, Kangawa K, et al. Existence of		
789		ghrelin-immunopositive and -expressing cells in the proventriculus of the hatching and		
790		adult chicken. Regul Pept. 2003; 111: 123-8.		
791	50			
792	50.	wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, et al., The novel		

793		hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion.
794		Endocrinology. 2000; 141:4325-8.
795		
796	51.	Wren AM, Small CJ, Abbott CR, Dhillo WS, Seal LJ, Cohen MA, et al. Ghrelin causes
797		hyperphagia and obesity in rats. Diabetes. 2001, 50:2540-7.
798		
799	52.	Xu L, Depoortere I, Tang M, Peeters TL. Identification and expression of the motilin
800		precursor in the guinea-pig. FEBS Lett 2001; 490: 7-10.
801		
802	53.	Xu L, Depoortere I, Tomasetto C, Zandecki M, Tang M, Timmermans JP, et al. Evidence
803		for the presence of motilin, ghrelin and the motilin and ghrelin receptor in neurons of the
804		myenteric plexus. Regul Pept 2005; 124: 119-25.
805		
806	54.	Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the
807		acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell
808		2008; 132: 387-96.
809		
810	55.	Yabuki A, Ojima T, Kojima M, Nishi Y, Mifune H, Matsumoto, et al. Characterization
811		and species differences in gastric ghrelin cells from mice, rats and hamsters. J Anat 2004;
812		205: 239-46.
813		
814	56.	Yamato M, Sakata I, Wada R, Kaiya H, Sakai T. Exogenous administration of octanoic
815		acid accelerates octanoylated ghrelin production in the proventriculus of neonatal chicks.
816		Biochem Biophys Res Commun. 2005; 333: 583-9.
817		
818		

Figure 1. Nucleotide sequence and deduced amino acid sequence of the guinea pigghrelin.

The guinea pig ghrelin cDNA (Acc # LC322126) consists of 514 bp, which encodes a 117-amino-acids pre-proghrelin. Mature guinea pig ghrelin consisting of 28 amino acids is *underlined*. The glutamine (Gln, Q) residue surrounded by a circle indicates the deleted amino acid in the case of des-Gln14 ghrelin. The polyadenylation signal (AATAAA) is *boxed*.

826

827 Figure 2. Purification profiles of guinea pig ghrelin

(A) Gel-filtration high-performance liquid chromatography (HPLC) of the strong basic
peptide-enriched SP-III fraction. (B) Carboxymethyl (CM) cation-exchange HPLC (pH 4.8) of
the active fraction (frs.13-17) from gel-filtration HPLC. (C) RP-HPLC for group "e" (frs.
61–63) from CM-HPLC. (D) Final RP-HPLC using a diphenyl column. A peak indicated by
the arrowhead was isolated. *Black bars* in each graph indicate changes in intracellular Ca²⁺
concentrations of CHO-GHSR62 cells.

834

Fig. 3. Comparison of amino acid sequences of mature guinea pig ghrelin with mature ghrelin in vertebrates

837 Asterisks and dots indicate amino acids identical in all species or identical over the half

838	number among species. In parenthesis indicates the number of amino acid identical to ghrelin
839	in the animal compared to guinea pig ghrelin, and the percentage indicates the identity of
840	amino acid to gp-ghrelin when compared with ghrelin in each animal. Amino acid sequences
841	were obtained from the DDBJ/EMBL/GenBank [™] databases (acc #: NM_012488 for mouse,
842	NM_021669 for rat, XM_002722463 for rabbit, AY903701 for cattle, AB060699 for sheep,
843	AY028942 for pig, NM_001032903 for Rhesus monkey, XM_002758630 for marmoset,
844	AB089201 for cat, AB060700 for dog, EU375448 for giant panda, XM_001375640 for
845	opossum, EU677468 for wallaby, AB029434 for human, EF613551 for duck, AY338465 for
846	goose, AB075215 for white leghorn chicken, AY338467 for emu, AB161457 for red-eared
847	slider turtle, AB058510 for bullfrog, AB062427 for Japanese eel, FJ560488 for large yellow
848	croaker, AB077764 for Mozambique tilapia, DQ665912 for European seabass, AB096919 for
849	rainbow trout, AF454389 for goldfish, NM_001083872 for zebrafish, AB254128 for
850	hammerhead shark, AB254129 for blacktip reef shark, AB4800033 for the red stingray).
851	
852	Figure 4. Changes in intracellular Ca ²⁺ concentrations in rat or gpGHS-R1a-expressing
853	mammalian cells induced by rat ghrelin and gp-ghrelin
854	(A) gpGHS-R1a was transiently expressed in HEK 293 cells. These cells were treated with
855	rat ghrelin (\blacksquare) and gp-ghrelin (\bullet) (0.01–100 nM), and increases in Ca ²⁺ concentration were
856	measured. (B) Rat GHS-R1a was stably expressed in CHO cells and the effects of rat ghrelin

857	(■) and gp-ghrelin (•) (0.01–100 nM) were examined. Intracellular Ca^{2+} changes were		
858	measured by the FLIPR system. Values are expressed as means \pm standard error of mean (n =		
859	3).		
860			
861	Figure 5. Tissue-dependent differential expression of guinea pig ghrelin mRNA and		
862	GHS-R1a mRNA in the central and peripheral tissues.		
863	Ghrelin (A) and GHS-R1a (B) mRNAs expression levels were quantified by real-time		
864	polymerase chain reaction and indicated as relative values normalized against the expression		
865	levels of β -actin mRNA. Values are expressed as mean \pm standard error of mean from most		
866	of the organs in 4–5 guinea pigs (<i>Ghrelin</i> mRNA: ovary, n = 3; <i>GHS-R1a</i> mRNA: liver,		
867	kidney, and ovary, $n = 2$; uterus, $n = 3$).		
868			
869	Figure 6. Distribution of ghrelin-immunoreactive cells in the stomach and pancreas of		
870	guinea pig. A: Schematic diagram of sampling site in stomach.		
871	epithelium;		
872	mucosa. B: Cardia. C: Body-lesser curvature. D: Body-greater curvature, E: Pylorus. F:		
873	Pancreatic islet. Ghrelin-immunoreactive cells (arrows). Scale bar: $B-E = 100 \ \mu m$; $F = 50 \ \mu m$		
874			
875	Figure 7. Distribution of GOAT-immunoreactive cells in the stomach and duodenum of		

876	guinea pig.
877	Stomach (A–D) and duodenum (E–H). Immunofluorescence staining for GOAT (B and F,
878	red), ghrelin (C and G), and merged (D and H, yellow). Immunoreactive cells (arrows). Scale
879	bar: A and $E = 100 \ \mu m$
880	
881	Figure 8. Immunoelectron micrographs of a ghrelin cell in the guinea pig gastric mucosa.
882	A: Cells with immunogold labeling for ghrelin. B: Ghrelin-immunoreactive granules (arrow).
883	Scale bar: A, 1 μm; B, 200 nm.
884	
885	Figure 9. The effects of rat ghrelin and guinea pig ghrelin on smooth muscle
886	contractility in isolated guinea pig gastrointestinal tract.
887	(A) Rat ghrelin (\Box, \blacksquare) or gp-ghrelin (\bigcirc, \bullet) -induced mechanical responses of gastric antrum
888	circular muscle with intact mucosa (M+) or without mucosa (M-). (B) Rat ghrelin (\Box, \blacksquare) or
889	gp-ghrelin (\bigcirc , •)-induced mechanical responses of whole ileum(whole, with mucosa) and
890	longitudinal muscle (strips, without mucosa). (C) Rat ghrelin or gp-ghrelin-induced
891	mechanical responses of longitudinal muscle strips (without mucosa) from proximal and
892	distal colon. Values are expressed as mean ±standard error of mean from three to seven
893	experiments.

895 Figure 10. Effect of intraperitoneal injection of ghrelin on cumulative food intake (A)

- and blood glucose concentration (B) in guinea pigs. Values are expressed as mean ±
- standard error of mean from six experiments for food intake, and three experiments for blood
- glucose concentration. *: P < 0.05, **: P < 0.01 compared with the values of the saline group.

Figure

GAAAAGCCGTGCAGAGTCCAGGCCCCTCTGCCTGTCCCCTCTGGTGGAGGCCATGACCTT MTL A G T I C S L L L S V L W M E L A M A CGGCGCTAGCTTTCGGAGCCCTGAGCATCACAGCGCACAGCAGAAAAGGAGTCCAGGAA GASFRSPEHHSAQQRKESRK GCTGCCAGCCAAAATACAGCCGCGAGAGCTGGAAGACTGGCCCCGCCCAGAAGGCAGAGG L P A K I Q P R E L E D W P R P E G R G GAAGGCTGACGCGGCACGAGAGGAGCTAGAGACCCAGTTCAATGTCCCACTGGATATCGG K A D A A R E E L E T Q F N V P L D I G AGTCAAACTGTCCGGGGCTCAGTACCAGCAGCACAGCCAGGCCCTGGGAAAACTGCTTCA V K L S G A Q Y Q Q H S Q A L G K L L Q GGCTGTCCTTGGAGAAGAGGCTGAAGAGGCCCCCGCAGACAAGTGATGCTGCAGGACAGC AVLGEEAEEAPADK* TTTAAGAGGCAAATAAATATCCCAACTGCTTGCC

....* Guinea-pig GASFRSP-EHHSAQORK-ESRKLPAKIQPR (28/28) 100% Mouse GSSFLSP-EHQKAQQRK-ESKKPPAKLQPR (21/28) 75% GSSFLSP-EHQKAQQRK-ESKKPPAKLQPR (21/28) 75% Rabbit GSSFLSP-EHQK-AQRK-DAKKPPARLQPR (17/27) GSSFLSP-EHQKL-QRK-EAKKPSGRLKPR (14/27) Cattle Sheep GSSFLSP-EHQKL-QRK-EPKKPSGRLKPR (14/27) GSSFLSP-EHOKVOORK-ESKKPAAKLKPR (18/28) Pig 64% Rhesus monkey GSSFLSP-EHQRAQQRK-ESKKPPAKLQPR (21/28) 75% Marmoset GSSFLSP-EHQRI-QRK-ESKKPPAKLQTR (18/27) GSSFLSP-EHQKV-QRK-ESKKPPAKLQPR (19/27) GSSFLSP-EHQKLQQRK-ESKKPPAKLQPR (20/28) 71% Giant panda GSSFLSP-EHQKV-QRK-ESKKPPAKLQPR (19/27) GSSFLSP-EHPKT-QRK-ETKKPSVKLQPR (16/27) Opposum Wallaby GSSFLSP-EHPKT-QRK-ESKKPA-KLQPR (19/26) GSSFLSP-EHQRVQQRK-ESKKPPAKLQPR (20/28) Human GSSFLSP-EFKKIQQQN-DPTKTTAKIH-- (12/26) Duck GSSFLSP-EFKKIQQQN-DPAKATAKIH-- (12/26) Goose Chicken GSSFLSP-TYKNIQQQK-DTRKPTARLH-- (11/26) GSSFLSP-DYKKIQQRK-DPRKPTTKLH-- (12/26) Slider turtle GSSFLSP-EYQNTQQRK-DPKKHT-KLN-- (11/25) Green anole GSSFLSP-EQPKMQQRK-VSQKSVTKFH-- (13/26) 47% Bullfrog GLTFLSPADMQKIAERQ-SQNKLRHGNMN- (5/28) 18% Japanese eel GSSFLSP-S-QR-PQGK--DK-KPPRV--- (8/21) Large yellow croaker GSSFLSP-S-OK-PONR--GKS-PPRV--- (8/21) 29% Mozambique tilapia GSSFLSP-S-QK-PQNK--VK--SSRI--- (8/20) 29% European seabass GSSFLSP-S-QK-PQSR--GK--SSRV--- (8/20) Rainbow trout GSSFLSP-S-QK-PQVR-QGKGKPPRV--- (9/23) Goldfish GTSFLSP-A-QK-PQGR---R--PPRM--- (8/19) 29% Zebrafish GTSFLSP-T-QK-PQGR---R--PPRV--- (8/19) 29% GVSF-HPRLKEKDDNSSGNSRK-S-K-NP- (5/25) 18% Hammerhead shark Blacktip reef shark GVSF-HPRLKEKDDNSSGNTRKFSPK---- (6/25) GVSF-HPOPRSTSKPSA----- (8/16) 29% Red stingrav

....*

61%

50%

50%

64%

64%

68%

68%

57%

68%

71%

43%

43%

39%

43%

39%

29%

29%

32%

21%

Rat

Cat

Dog

Emu

Figure

Fig.4

Fig.9

Fig.10

Groups	Pufication proceses	Detected Mass [M+H]	Expected molecular form
А	CM fr.50-52, RP fr.21-22, Vy fr.1	3222.0	des-Arg28 ghrelin[1-27](C10:2)
В	CM fr.,53-55 RP fr.23, Vy fr.7	3224.4	des-Arg28ghrelin[1-27](C10:0)
С	CM fr.56-58, RP fr.21-23, Vy fr.13	3224.5	des-Arg28ghrelin[1-27](C10:0)
D	CM fr.59-60, RP fr.21-23, Vy fr.17-19	N.D.	
Е	CM fr.61-63, RP fr.23, Vy fr.20	3380.8*	ghrelin[1-28](C10:0)
F	CM fr.64-66, RP fr.23, Vy fr.24	3252.5	des-Gln14 ghrelin[1-27](C10:0)
		3380.0	ghrelin[1-28](C10:0)
G	CM fr.67-69, RP fr.24-25, Vy fr.27-31	N.D.	

Table 1 Ghrelin isoforms identified in purification process of the extract of the guinea pig stomach

Note

CM: carboxylmethyl (CM)-HPLC; RP: preparative reverse-phase HPLC with Symmetry column; Vy: reverse-phase HPLC with Vydac column N.D.: not detected; * indicate the most yielded, major form.