1		
2		
3	Title: Role of neuro	otensin in the regulation of gastric motility in healthy conscious sheep
4		
5	Short running title:	Neurotensin inhibits ovine ruminal contractions
6		
7	Authors: Takenori	Onaga ¹ , Tomohiko Shimoda ² , Taro Ohishi ² , Yumiko Yasui ¹ , Hideaki Hayashi ²
8		
9	Institute: Laborator	ry of Veterinary Physiology and Nutrition ¹ , and Laboratory of Veterinary Physiology ² ,
10	Departme	ent of Biosciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu,
11	Japan.	
12		
13	Corresponding aut	nor: Takenori Onaga, D.V.M., Ph. D.
14		Laboratory of Veterinary Physiology and Nutrition,
15		Department of Biosciences, School of Veterinary Medicine,
16		Rakuno Gakuen University,
17		582 Bunkyodai-Midorimachi, Ebetsu, Hokkaido 069-8501,
18		JAPAN
19	Phone & Fax:	+81-11-388-4776

- 20 E-mail: onaga@rakuno.ac.jp
- 21
- 22 Footnote:
- 23 Abrrebiations: neurotensin, NT; neurotensin receptor, NTR; gastrointestinal, GI, bethanechol, BCh;
- 24 electromyographic, EMG; electric field stimulation, EFS
- 25
- 26

27 Abstract

28	The goal of present study was to determine the effects of the intravenous (i.v.) administration of
29	neurotensin (NT) on the ovine forestomach and abomasal motility in conscious sheep. NT injection at 0.3
30	nmol/kg slightly raised abomasal pressure, although the effect was not dose-dependent. A bolus i.v.
31	injection of NT at 1 or 3 nmol/kg significantly inhibited the amplitude of cyclic ruminal contractions. NT
32	injection did not alter omasal motility. Pre-injection of an NT receptor subtype-1 antagonist, SR 48692, at
33	60 nmol/kg immediately before NT injection did not block the inhibitory effect of NT. In an <i>in vitro</i> study
34	using smooth muscle strips of the rumen dorsal sac, NT application at 0.3-10 μ mol/L did not inhibit the
35	bethanechol (BCh, 10 µmol/L)-induced tonic contractions of either the longitudinal and circular muscle
36	strips, nor did NT inhibit the electrical field stimulation (EFS)-induced phasic contractions of the muscle
37	strips. The results suggest that circulating NT selectively inhibits the amplitude of cyclic rumen contractions
38	presumably by inhibiting the gastric center in the medulla oblongata and/or the vagus nerves, but not
39	through its peripheral action. An elevation in the plasma concentration of NT appears able to exert the ileal
40	brake on ruminal motility in sheep.

41

42 Keywords: neurotensin, forestomach, rumen, contraction, inhibition, ileal-brake, sheep

43

1. Introduction

46	Neurotensin (NT) is a tetradecapeptide (Carraway and Leeman, 1975), and 85 % of NT in the
47	body in rats is distributed in the gastrointestinal (GI) tract (Carraway and Leeman, 1976). NT-positive
48	endocrine cells are primarily distributed in intestinal crypts in the caudal small intestine (Helmstaedter et
49	al., 1977; Kitamura et al., 1985; Reinecke, 1985), whereas NT-containing neurons are also localized in the
50	submucosal and myenteric nerve plexuses throughout the GI tract in humans, rats, guinea pigs, cats, and
51	rabbits (Carraway and Leeman, 1976; Holzer et al., 1982). NT exerts a variety of biological effects in the
52	GI tract (Ferris, 1989) including the inhibition of gastric acid, pepsinogen secretion and gastric blood flow
53	(Blackburn et al., 1980; Fletcher et al., 1985), the stimulation of pancreatic exocrine secretion (Konturek et
54	al., 1983), and the modulation of pacemaker activity in the interstitial cells of Cajal (Lee et al., 2012).
55	With regard to GI motility, the administration and application of NT exerts both excitatory and
56	inhibitory effects on the same tissues. In the stomach, NT application causes smooth muscle contraction of
57	the rat gastric fundus (Huidobro-Toro and Kullak, 1985), whereas i.v. infusion of NT inhibits gastric
58	motility in rats and humans (Blackburn et al., 1980; Hellstrom et al., 1982), indicating the indirect
59	predominant inhibitory action of NT. Due to this inhibitory action on the upper GI tract, NT has been
60	considered as a possible mediator of the ileal brake induced by the caudal intestinal hormones involving
61	peptide YY and glucagon-like peptide-I (Onaga et al., 2002; Barreto and Windsor, 2017). In contrast, NT
62	application leads to contractions of ileal muscle strips, in part through the neural release of acetylcholine
63	and substance P in guinea pigs (Kitabgi and Freychet, 1978), indicating the peripheral indirect excitatory

64 action of NT. In terms of colonic motility, application of NT induced muscle strip contractions in the rat 65 and human colon (Mule et al., 1995; Croci et al., 1999), whereas NT application directly induced muscle 66 relaxation in the guinea-pig colon (Kitabgi and Vincent, 1981), indicating region- and species-specific 67 differences in the action of the peptide. 68 Most studies on the physiological roles of NT in the regulation of GI motility have been 69 performed using monogastric species. However, unlike monogastric species, ruminant species have a 70 characteristic forestomach. The rumen, which acts as a huge fermentation chamber, plays a crucial role in 71 the microbial digestion of feed, particularly dietary fibers. Some immunohistochemical studies reported 72 that NT is abundantly distributed in the ileum in cattle (Kitamura et al., 1985) and that NT-containing 73 neurons and fibers are localized in the myenteric region of the forestomach and abomasum in Karakul lambs 74 (Groenewald, 1994). However, the effects of NT on forestomach and abomasal motility have not been 75 examined in sheep or other ruminant species in vivo, and it remains unknown whether NT can serve as a 76 mediator of the ileal brake from the hindgut to the stomach in ruminant species. We previously 77 demonstrated that peptide YY did not exert any inhibitory effect on gastric motility in sheep, implying that 78 peptide YY does not play a role as a mediator of the ileal brake in sheep (Onaga et al., 1997a; Onaga et al., 79 2000). We, then, hypothesized that NT might play a role as a mediator of the ileal brake on gastric motility 80 in sheep. Therefore, the present study was designed to determine the role of NT in the regulation of gastric

81 motility in sheep. We examined the effects of i.v. injection of human NT, which is identical to ovine NT, on

82 forestomach and abomasal motility in conscious healthy adult sheep. As NT exerted an inhibitory effect on

83 only ruminal contractions, we also examined the peripheral effects of NT on BCh- and EFS-induced

84 contractions of smooth muscle strips of the rumen in an *in vitro* experiment.

- 86 2. Materials and methods
- 87 2.1 Drugs

88	The nucleotide sequence coding ovine NT was translated into the amino acid sequence
89	QLYENKPRRPYIL (GenBank accession No. XM_004006237). The deduced sequence completely
90	coincided with the amino acid sequence of human NT (BC010918). Therefore, we used commercial
91	human NT for all the experiments. Human NT was purchased from the Peptide Institute (Product No.
92	4029, molecular weight 1672.9, Osaka, Japan). NT was dissolved at 100 µmol/L in a sterilized
93	physiological saline solution (NaCl 150 mmol/L), and frozen at -35° C until use. Bethanechol
94	hydrochloride (BCh) was purchased from Sigma Chemicals (St. Louis, MO, USA). NT receptor
95	subtype-1 (NTR-1) antagonist, SR 48692, was purchased from Santa-Cruz Biotechnology Inc. (sc-
96	363290, Santa Cruz, CA, U.S.A.) (Gully et al., 1993). SR 48692 was dissolved at 28.4 mmol/L in
97	dimethyl sulfoxiside as a stock solution, and diluted immediately before administration with a
98	commercial electrolyte solution. The final concentration of dimethyl sulfoxiside in the infusion was
99	approximately 3.5%. Pentobarbital sodium (Somuno pentil injection®) and atropine sulfate were
100	purchased from Schering-Plough Animal Health Corp. (NJ, USA) and Wako Pure Chemical Industries
101	(Osaka, Japan), respectively. Halothane and buprenorphine hydrochloride were purchased from

Takeda Pharmaceutical (Osaka, Japan) and Ohtsuka Pharmaceutical (Tokyo, Japan), respectively.

103

104 2.2 Animals

105	Twelve male Suffolk sheep weighing 37.5-57.0 kg (mean \pm SD: 43.3 \pm 5.9 kg) were used for the
106	experiment. The experiment was performed under the Laboratory Animal Control Guidelines of our
107	institution, which conform to the Guide for the Care and Use of Laboratory Animals of the NIH in the
108	USA. The experimental protocol used in the present study was approved by the Ethics Committee for
109	Animal Experiments in the School of Veterinary Medicine, Rakuno Gakuen University (H17C17,
110	VH25C11, VH14C6). Sheep were kept in individual cages in an experiment room and trained to
111	maintain a standing position for 2 hours before the onset of experiment. The animals were fed lucerne
112	hay (400 g) and lucerne pellets (1.6 % of body weight) once a day at 18:00. Water was freely available
113	except during the experiment.
114	Seven sheep were used for the first experiment of the series. Before surgery, animals were fasted
115	for one day. After i.v. administration of atropine sulfate (0.2 mg/kg) and pentobarbital sodium (12
116	mg/kg), animals were anesthetized by inspiration of halothane-oxygen gas through an intratracheal
117	cannula. Animals were laid down on their right side and were fitted with a plastic ruminal cannula (I.
118	D. 20 mm, O. D. 25 mm, length 70 mm, Fujiya Rika Instruments, Sapporo, Japan) in the left flank.
119	The cannula was fixed at the gastric wall and skin by a double purse-string ligature. During laparotomy
120	on the right flank, bipolar silver electrodes (0.5 mm in diameter, fixed 10 mm apart in a sheet of nylon

121	mesh and covered with epoxy and silastic resin) were sutured onto the center of the greater curvature
122	of the omasum. The electrodes were handmade as described previously (Onaga et al., 1997b). Wires
123	from the electrodes were exteriorized from the right flank and fixed by a purse-string suture on the
124	skin. Flexible polyethylene cannulae (Multipurpose tube, 7 Fr., 2.35 mm O.D., 750 mm length, Atom
125	Medical Inc.,, Tokyo, Japan) with a silicon rubber guard attached 30 mm from the tip were inserted
126	into the lumen of the omasal canal, abomasal corpus, and abomasal antrum. The cannulae were fixed
127	on the gastric wall by double purse-string ligatures. After surgery, buprenorphine hydrochloride (5
128	μ g/kg) was injected intramuscularly (i.m.), and administration of an antibiotic (benzylpenicillin, 1,500
129	U/kg, i.m., Meiji-Seika, Tokyo, Japan) was continued for 3 days. Animals were allowed a recovery
130	period of 1 week before the start of experiments.
131	Five sheep were used in the second experiment of the series, which focused on ruminal motility.
132	Sheep were equipped with only a ruminal cannula in the left flank using a similar surgical procedure
133	to that described above for the first experiment.
134	
135	2.3 The effects of NT on in vivo motility in the rumen, omasum, and abomasum in conscious sheep
136	Before the initiation of the experiments, animals were trained to maintain a standing position for
137	at least 3 hours. The experiments were carried out between 9:00 and 15:00. An indwelling catheter
138	was inserted into the jugular vein before the experiment and filled with sterilized sodium chloride
139	solution (150 mmol/L) containing heparin (10 U/ml). Frozen stock solutions of NT were melted at

140	room temperature and then diluted with a commercial isotonic electrolyte solution, Solulact (mmol/L:
141	Na ⁺ 131.0, K ⁺ 4.0, Ca ²⁺ 3.0, Cl ⁻ 110.0, Lactate ⁻ 28.0; Terumo, Japan). Solulact was used as the vehicle
142	solution for the drugs.
143	Animals were kept in a standing position in the cages during the experiment. In the first
144	experiment of the series, after a control period of 40 minutes, NT was injected (i.v.) at bolus doses of
145	0.3, 1.0, and 3.0 nmol/kg at 0 minutes. Recording was continued until 50 minutes after NT injection.
146	In the second experiment of the series, after a control period of 20 minutes, NT was injected (i.v.) at
147	a bolus dose of 1.0 nmol/kg at 0 minutes with and without an i.v. pre-injection of SR 48692 at 60
148	nmol/kg at -5 minutes. In addition, SR 48692 was solely injected at -5 minutes without NT injection
149	as a control.
150	Changes in intraluminal pressure in the rumen dorsal sac, omasal canal, abomasal corpus, and
151	abomasal antrum were measured using the intraluminal cannulae, which were connected to pressure
152	transducers (Becton Dickinson, Franklin Lakes, NJ, USA) (Onaga et al., 1998). The ruminal cannula
153	had a balloon (thin gum balloon, 6 ml volume) on the tip to avoid clogging of the tip. The balloon was
154	placed 2-3 cm forward of the inner opening of the ruminal cannula. The cannulae in the omasum and
155	abomasum were infused with physiological saline at 15 $\mu l/kg/min$ using a four-channel peristaltic
156	pump (SJ-1220, Atto, Tokyo, Japan) to avoid clogging of the tip. With regard to ruminal basal pressure
157	and contractions, tonic and phasic changes in intraluminal pressure were recorded through a transducer

159	(AD Instruments, Castle Hill, Australia) and a Macintosh computer (Apple, Cupertino, CA, U.S.A.),
160	and PowerLab (AD Instruments) and an Windows computer (Hitachi, Tokyo, Japan). In the omasum,
161	motility of the omasal greater curvature was measured by electromyographic (EMG) techniques, as it
162	is very difficult to measure the luminal pressure of the omasum on account of the multiple layers of
163	omasal leaves and fibrous digesta in their tight interspaces. Omasal EMG activities were recorded
164	through the bipolar silver electrodes and bioelectric amplifiers (time constant 0.1 msec, high cut
165	frequency 30 Hz, NEC San-ei) using the same digital data recording system (Onaga et al., 1997a).
166	
167	2.4 The in vitro effects of NT application on muscle strips of the rumen dorsal sac
168	Eight sheep were used for the <i>in vitro</i> experiment which was performed after the <i>in vivo</i>
169	experiments. After euthanasia under pentobarbital anesthesia (25 mg/kg i.v.), the cranial left wall of
170	the rumen dorsal sac was excised and washed with ice-cooled Krebs-Henseleit solution (mmol/L);
171	$Na^{+} 137.80, K^{+} 5.90, Ca^{2+} 1.25, Mg^{2+} 1.20, Cl^{-} 122.20, H_2PO_4^{-} 1.20, HCO_3^{-} 22.00, SO_4^{2-} 1.2, Glucose$
172	5.5, acetic acid 0.8 (pH 7.40 under 95 % O_2 + 5 % CO_2). The mucosa was immediately removed from
173	the specimens, and the muscle layer was kept in ice-cooled Krebs-Henseleit solution.
174	Longitudinal and circular muscle strips involving the myenteric nerve plexus (length 10 mm,
175	width 1.0-1.5 mm) were excised from the ruminal specimen and incubated in Krebs-Henseleit solution
176	in warmed organ baths (9 mm I. D. x 24 mm depth, volume 2 ml) maintained at 37°C. In the first
177	experiment, an initial tension of 1.0 g was loaded onto the muscle strips. Isometric tension was

178	recorded using force transducers, transducer amplifiers (type 45196A and polygraph system 366, NEC
179	San-ei) and the PowerLab system. After an equilibration period of 30 minutes, bethanechol
180	hydrochloride (BCh, 10 µmol/L) was applied to the muscle strips for 6 minutes (Onaga et al., 2009).
181	After washing with fresh Krebs-Henseleit solution and an interval of 30 minutes, BCh (10 μ mol/L)
182	was again applied. Two minutes later, NT (0.3-10 μ mol/L) was simultaneously applied in an
183	accumulative manner at 1-minute intervals. The viability and recovery of muscle strips was confirmed
184	by a third application of BCh alone.
185	In the second experiment, isotonic tension was recorded under a tension of 1.0 g using
186	displacement transducers, transducer amplifiers (type 45347 and polygraph system 366, NEC San-ei)
187	and the PowerLab system as it was difficult for the isotonic transducer to record steady contractions
188	by repeated electric field stimulation (EFS) over a long period. After preincubation for 30 minutes,
189	muscle contractions were induced by EFS (duration 0.5 msec, frequency 20-40 Hz, voltage 80-100 V,
190	stimulator type 2907, polygraph system 366, NEC San-ei) for 10 seconds at 2-minute intervals. After
191	recording four EFS-induced contractions as a control, NT (0.1-10 µmol/L) was cumulatively applied
192	to the muscle strips at 8-minute intervals and three EFS-induced contractions were recorded for each
193	concentration of NT. As the amplitude of the EFS-induced contractions tended to slightly lower
194	without NT application, the contractions were compared with and without NT application. After
195	washing, the inhibitory effect of lidocaine at 1 mmol/L on the EFS-induced contractions was
196	confirmed.

198 2.5 Statistical analysis

199	Experimental data were analyzed for every 5-minute period and shown as the mean \pm SEM. In
200	the rumen, contractions were analyzed for three parameters; i.e., mean intraluminal pressure involving
201	cyclic phasic rumen contractions, and the frequency and mean amplitude of primary contractions. We
202	did not analyze secondary contractions of the rumen as they occurred irregularly. Omasal EMG
203	activity was analyzed for frequency (spikes/5 minute). EMG recordings involving a lot of continuous
204	or repeated electric noises higher than 20 Hz. $(n = 2)$ were excluded from the analysis. Mean
205	intraluminal pressure in the omasum, abomasal corpus and antrum was calculated for every 5-minute
206	period. Statistical significance of the temporal changes was determined by one-way repeated
207	measurements analysis of variance (ANOVA) and Tukey's multi-comparison test using Prism
208	commercial software (GraphPad, San Diego, CA, USA). The value at every time point was compared
209	to the value immediately before the injection (Fig. 2, Fig. 3, and Fig. 5). In addition, integrated change
210	was calculated for the increment of 15 minutes between before and after the injection (Fig. 2, Fig. 4,
211	and Fig. 5) and compared by one-way factorial ANOVA using Prism. Differences were considered to
212	be statistically significant at a <i>p</i> -value of less than 0.05.
213	In the <i>in vitro</i> study, the amplitude of the contractile responses to BCh and EFS varied in muscle
214	strips. Therefore, we calculated the contractile ratio of the BCh-induced tonic contraction after NT
215	application against the tension immediately before application of NT in the first application of BCh.

216	Likewise, we calculated the contractile ratio of the EFS-induced phasic contractions after NT
217	application against the tension of the first EFS-induced contraction without NT application. In both
218	cases, changes in the contractile ratio were compared by one-way factrional ANOVA using Prism and
219	differences were considered to be statistically significant at a <i>p</i> -value of less than 0.05.
220	
221	3. Results
222	3.1 Effects of the intravenous injection of NT on forestomach and abomasum motility in sheep
223	Rumen: The rumen exhibited regular phasic contractions (Fig. 1). During the control period, the mean
224	intraluminal pressure was 51.7 \pm 2.4 mmHg and the rumen showed cyclic contractions at a
225	stable frequency and amplitude of 4.3 \pm 0.2 times/5 min and 8.5 \pm 0.9 mmHg, respectively
226	(Fig. 2, left). Bolus i.v. injections of NT at all doses did not alter the mean intraluminal basal
227	pressure of the rumen (Fig. 2, left), whereas NT injection at 1 and 3 nmol/kg inhibited cyclic
228	ruminal contractions, with NT significantly decreasing the amplitude of ruminal contractions in
229	particular (Fig. 2, $p < 0.001$). The frequency of ruminal contractions showed a tendency to increase
230	shortly after the NT injection at 0.3 nmol/kg, whereas it significantly decreased after the NT
231	injection at 3 nmol/kg (p < 0.05). As regards the total response for 15 minutes, the increment in
232	mean intraluminal pressure of the rumen did not change, whereas the frequency and amplitude of
233	cyclic rumen contractions were significantly inhibited by NT injections (Fig. 2, right).
234	Omasum: Intraluminal pressure in the omasal canal was stable during the control period (Fig. 1) with

235	a mean value of 7.75 \pm 1.73 mmHg (Fig. 3). EMG activity of the omasal greater curvature was
236	also stable before and after the control saline injection (Fig. 1) with a mean value of 227.3 \pm
237	76.1 spikes/5 min (Fig 3). Although the values in the control period tended to increase at the
238	beginning of the NT experiments, they became stable before the NT injections. Intravenous
239	injection of NT did not alter the increment of the mean intraluminal pressure in the omasal canal
240	or the spike frequency in the EMG activity in the omasal greater curvature at any dose (Fig. 4).
241	The spike frequency of the omasal EMG significantly declined at the end of the experiment after
242	NT injection at 1 and 3 nmol/kg.
243	Abomasum: Intraluminal pressure in the abomasal corpus and antrum was stable during the control
244	period (Fig. 1) with a mean value of 26.8 \pm 3.9 and 6.7 \pm 0.9 mmHg, respectively (Fig. 3).
245	Intravenous infusion of NT at 0.3 nmol/kg raised the intraluminal pressure in the antrum, though
246	the increase did not proceed in a dose-dependent manner (Fig. 3). NT injection at 1 and 3 nmol/kg
247	did not significantly alter the increment in intraluminal pressure for the 15-minute period in either
248	segment (Fig. 4), although the intraluminal pressure slightly but significantly rose at around 30
249	minutes in both the corpus and antrum (Fig. 3).
250	
251	3.2 The influence of pre-administration of SR 48692 on the inhibitory effect of NT on ruminal contractions.
252	The bolus i.v. injection of saline did not significantly change either the amplitude or frequency
253	of the ruminal contractions, while NT injection at 1 nmol/kg significantly inhibited the amplitude of

254	the ruminal contractions for 15 minutes (Fig. 5). The bolus i.v. administration of SR 48692 at 60
255	nmol/kg at -5 minutes did not change either the amplitude or frequency of the ruminal contractions.
256	Although the amplitude of the contractions varied slightly before NT injection, NT injection similarly
257	and significantly decreased the amplitude of the contractions after pre-administration with the
258	antagonist. The increment in the amplitude over the 15-minute period significantly declined for NT
259	injection after pre-administration of the antagonist in comparison with the value for pre-treatment with
260	the antagonist alone. The inhibitory effect of NT on the increment of the amplitude did not significantly
261	differ from the inhibitory effect of NT without the antagonist (Fig. 5).
262	
263	3.3 The in vitro effects of NT application on smooth muscle tension in the ruminal dorsal sac.
264	BCh application induced tonic and long-lasting contractions in the longitudinal and circular
265	muscle strips (Fig. 6). Repeated application of BCh induced stable tonic contractions of a similar
266	amplitude. NT application to the muscle strips did not significantly alter the amplitude of the second
267	BCh-induced contractions of either type of muscle strip at any of the NT concentrations tested (Fig. 6).
268	EFS induced stable mono-phasic contractions without relaxation of the longitudinal or circular
269	muscle strips of the ruminal dorsal sac (Fig. 7). Repeated application of EFS tended to gradually and
270	slightly decrease the amplitude of the phasic contractions of the muscle strips to 62.2 ± 8.5 % in the
271	longitudinal muscle and 71.2 \pm 13.4 % in the circular muscle without NT application, and 68.2 \pm 13.7 %
272	and 72.4 ± 7.5 % with NT application, respectively. However, these changes were not statistically

duced contractions in
plication of SR 48692
alue of 72.4 to 87.4 %;
s of muscle strip were
7), indicating that the
NT exerted a selective
NT exerted a selective n conscious sheep as
NT exerted a selective n conscious sheep as ty in the omasum or
NT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated
VT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated ated by vagal efferent
NT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated ated by vagal efferent umen does not account
VT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated ated by vagal efferent umen does not account of blocked by the pre-
VT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated ated by vagal efferent umen does not account of blocked by the pre- 1. On the other hand,
VT exerted a selective n conscious sheep as ty in the omasum or ajal in mice mediated ated by vagal efferent umen does not account of blocked by the pre- 1. On the other hand, nduced tonic or EFS-

292	effect of NT on the ruminal contractions is neither a direct action on the smooth muscles nor an action
293	mediated by peripheral intrinsic motor neurons. Moreover, as application of SR 48692 did not alter the
294	EFS-induced contractions of the smooth muscles, NTR-1 does not seem to be involved the regulation of
295	contractile responses in the gastric wall in either an excitatory or inhibitory manner. The lack of local effect
296	of NT on both types of muscle strips in the rumen implies that the inhibitory effect of NT on cyclic rumen
297	contractions is mediated through the central nervous system (CNS) or the extrinsic efferent nervous system
298	associated with the rumen; i.e., the vagal motor nerve.
299	With regard to the mechanism underlying the inhibitory action, NT-immunopositive neurons are
300	located not only in the peripheral nervous system but also in the brain (Uhl et al., 1979; Reinecke, 1985;
301	Papadopoulos et al., 1986), and the central administration of NT has been shown to produce several actions
302	(Hernandez et al., 1982; Nemeroff et al., 1982a; Nemeroff et al., 1982b; Tyler-McMahon et al., 2000).
303	Although the effect of the peptide was contrary to our results, the local application of NT was shown to
304	increase the firing rate of neurons in a sliced preparation of the nucleus of the solitary tract in rats (Ogawa
305	et al., 2005). In addition, inconsistencies in the other effects of NT between central and peripheral
306	administration have been reported in rats and dogs (Sumners et al., 1982; Bueno et al., 1985; Zhang et al.,
307	1989). A comparison of difference in the actions suggests that permeability of the blood-brain barrier is
308	probably a key to solving the discrepancies in the NT actions, as it has been suggested that NT as a natural
309	form of tridecapeptide does not cross the blood-brain barrier (Vincent, 1995). In sheep, however, the gastric
310	center was reported to be outside the blood-brain barrier (Ruckebusch, 1989) and is considered to be

311	responsible to circulating peptides such as cholecystokinin. Further, it has been hypothesized that both the
312	amplitude and frequency of the reticulo-ruminal contractions are regulated in the gastric center in the
313	medulla oblongata (Ruckebusch, 1989). In the present study, NT injection preferentially inhibited the
314	amplitude of the cyclic ruminal contractions in sheep. Accordingly, NT seems likely to primarily act on the
315	amplitude circuit of the gastric center or the efferent presynaptic neurons of the vagus nerves to inhibit
316	ruminal contractions. Such a selective action of the peptide is different from the inhibitory action of
317	cholecystokinin (Onaga et al., 1995) as i.v. infusion of cholecystokinin inhibits both the amplitude and
318	frequency of cyclic ruminal contractions in sheep.
319	On the other hand, the omasum and abomasum are also innervated by the motor neuron of the
320	vagus nerve (Ruckebusch, 1989). However, their motilities were not altered in the period immediately after
321	the i.v. injection of NT. They later decreased in the omasum and increased in the abomasum, although it is
322	not clear if the changes were due to the NT injection as with the rapid inhibitory effect on the rumen.
323	Although the reason remains unclear, the differences in the effect of NT may be accounted for by differences
324	in the dependency of these organs on vagal input.
325	The NTR-mediating action of NT has been classified into three subtypes in mammals; NTR-1,
326	NTR-2, and NTR-3. The first two subtypes are seven-transmembrane receptors in the cell membrane
327	(Vincent et al., 1999). In our study, i.v. injection of the NTR-1 antagonist, SR 48692, 5 minutes before NT
328	injection did not alter the inhibitory effect of NT, implying that NTR-1 is not involved in the <i>in vivo</i> action
329	of NT. The dose of the antagonist (60 nmol/kg) is close to the dose employed in mice to block increases in

330	vascular permeability (50 μ g/kg; equivalent to 85.2 nmol/kg) (Donelan et al., 2006), and the dose of 60
331	nmol/kg would afford an initial plasma concentration of 300 nmol/L (if the extracellular fluid is 20% of
332	body weight), which was shown to be sufficient to inhibit the contractile effect of NT (1-100 nmol/L) in
333	the rat duodenal and colonic muscles (SR 48692, 30-300 nmol/L) (Mule et al., 1996; Li et al., 2016).
334	Accordingly, it does not appear that the dose of the antagonist used in the sheep was too low to block the
335	effect of NT. Indeed, a higher dose (100 nmol/kg, n = 2, data not shown) of the antagonist yielded similar
336	results in the sheep. The possible role of the other subtypes of NTR in the inhibitory effect of NT remains
337	to be determined. We cannot completely exclude the possibility that SR 48692 does not bind to ovine NTR-
338	1 due to the possible species difference in the receptor molecules. Also, we should consider other possible
339	indirect influences of NT on ruminal motility similar, for example, to the effects on heart rate and systemic
340	blood pressure observed in rats (Kubo and Kihara, 1990; Ciriello and Zhang, 1997).
341	Although NT did not exert any peripheral inhibitory effect on the ovine rumen in the present
342	study, localization of NT nerves was demonstrated in the forestomach wall of Karakul lambs in the past
343	(Groenewald, 1994). Accordingly, NT neurons in the ruminal myenteric plexus possibly release NT to
344	inhibit ruminal contractions. However, the results of the <i>in vitro</i> experiment showed that NT did not inhibit
345	BCh- or EFS-induced contractions, which is not consistent with the previous study in Karakul lambs. It
346	remains unknown whether breed and/or age differences in sheep account for the different results between
347	the immunohistochemistry in Karakul lambs (Groenewald, 1994) and in adult Suffolk sheep. It was
348	demonstrated in rats that the NT gene was expressed in the stomach in the early postnatal period, but not in

adult rats (Wang and Evers, 1999; Evers, 2002), and such developmental changes in NT gene expression
might explain the different results observed in the two sheep studies. In pigs, likewise, NT-positive cells
appear in the entire intestine at 6- to 8-weeks of gestation, while NT-positive cells are restricted to the small
intestine throughout development (Alumets et al., 1983). Developmental changes in neural NT expression
in the ovine GI tract remain to be determined.
Extra-gastric sources of NT also have to be taken into account when considering the inhibition
of cyclic ruminal contractions by circulating NT. Mucosal endocrine cells in the caudal small intestine seem

a likely candidate as a peripheral source of NT in sheep, as with peptide YY (PYY) (Onaga et al., 2000;

357 Onaga et al., 2002). Ileal hormones; i.e., PYY, glucagons-like peptides (GLPs), and NT, are released through

the luminal response to long-chain fatty acids and are considered to be mediators of the negative feedback

regulation to the upper GI tract, termed the "ileal brake" (Read et al., 1984; Wen et al., 1995; Barreto and

360 Windsor, 2017), which results in inhibition of motor and secretory functions in the stomach and upper small

361 intestine in humans and dogs. The present study also suggests the possibility that NT plays the role of

362 mediator of the ileal brake on ruminal motility in sheep. If the ileal brake were activated in the rumen,

ruminal contractions would be inhibited or abolished. As the result, weak mixing causes mal-fermentationand the particle size of the contents remains large. In addition, stasis of the rumen can inhibit entry of

ruminal digesta into the omasum and abomasum through the reticulo-omasal orifice, which would greatly

366 alter digestion in the intestine and presumably elicit malnutrition in the affected animals. However, a blood

367 concentration of NT of 5.0-12.5 nmol/L immediately after the injection is estimated from the effective dose

368	of 1 nmol/kg. Although a nano mol level of 50 % effective dose of NT was shown in rats (Huidobro-Toro
369	and Kullak, 1985) and a similar plasma concentration of NT (6.7 nmol/L) was reported after fat ingestion
370	humans (Rosell and Rokaeus, 1979), the fat content in common feeds for domestic ruminants are not so
371	high. With regards to the response to high fat diet, the postprandial concentration of plasma NT was reported
372	to be 44-48 pmol/L after milk ingestion in calves (Blackburn et al., 1981) and 26-91 pmol/L after fat
373	ingestion in humans (Theodorsson-Norheim and Rosell, 1983; Walker et al., 1985; Feurle et al., 1986)
374	Thus, the effective plasma concentration of NT seems to be fairly high unless NT has the ability to surge.
375	However, we do know that some sheep were fed residual pellets from food factories, such as those
376	producing potato chips, in a suburban area, and in some countries cattle are fed tallow and palm oils as a
377	fat supplement (Shibata, 1988; Tomkins and Drackley, 2010). Such feeds have a higher fat content and
378	could possibly cause a high fat concentration in the lower intestine that would activate the ileal brake. On
379	the other hand, a 25-amino acid peptide, xenin, has high homology with NT in terms of the N-terminal
380	amino acid residues (Huidobro-Toro and Kullak, 1985), and xenin was shown to relax rat ileal muscle via
381	muscular NT receptors (Clemens et al., 1997). Also, the contractile and inhibitory effects of xenin on the
382	intestine in guinea pigs were inhibited by a NTR-1 antagonist (Feurle et al., 1996). Xenin is also found in
383	the human gastric mucosa (Feurle et al., 1992). Accordingly, it is possible that xenin is endogenously
384	released from the mucosa of the GI tract where it inhibits ruminal contractions in sheep. The physiological
385	role of endogenous NT and xenin in the inhibitory regulation of ruminal contractions in sheep remains to
386	be determined.

388 5. Conclusion

389	In conclusion, the present study demonstrated that intravenous injection of NT inhibited the
390	amplitude of cyclic ruminal contractions in sheep, whereas it did not inhibit omasal or abomasal motility
391	in a dose-dependent manner. However, pre-injection of SR 48692 immediately before NT injection did not
392	block the inhibitory effect of NT, implying that NTR-1 is not involved in the inhibitory effect of NT. In the
393	in vitro study, NT application did not inhibit BCh-evoked smooth muscle contractions of the rumen, and
394	NT did not alter the basal tension or EFS-induced contractions, implying that NT does not inhibit ruminal
395	muscle contractions through the local action. Hence, the present study suggests that circulating NT
396	selectively inhibits the amplitude of cyclic ruminal contractions by inhibiting the gastric center in the CNS
397	and/or excitatory presynaptic motor neurons of the vagus nerve in sheep. An elevation in the plasma
398	concentration of NT appears likely activate the ileal brake on ruminal motility in sheep, but not that on the
399	omasum or abomasum.
400	
401	Author contributions

T. Onaga contributed to all aspects of this work. T. Shimoda and T. Oh-ishi contributed to the
animal surgery and experiments, and data analysis. Y. Yasui and H. Hayashi contributed to the experimental
design, manuscript preparation, and provided technical expertise for animal surgery.

406 Acknowledgements

407	The authors thank Dr. Chiaki Ishihara and the late Dr. Masayoshi Tsuji for their helpful advice.
408	The authors also thank Dr. Takashi Kurosawa and Mr. Mitsutoshi Ueno for their help in providing animals.
409	This study was funded by our university, but was not supported by additional funding from any foundations.
410	
411	References
412	Alumets, J., Hakanson, R., Sundler, F., 1983. Ontogeny of endocrine cells in porcine gut and pancreas. An
413	immunocytochemical study. Gastroenterology 85, 1359-1372.
414	Barreto, S.G., Windsor, J.A., 2017. Does the Ileal Brake Contribute to Delayed Gastric Emptying After
415	Pancreatoduodenectomy? Dig. Dis Sci. 62, 319-335.
416	Blackburn, A.M., Bloom, S.R., Edwards, A.V., 1981. Pancreatic endocrine responses to physiological
417	changes in plasma neurotensin concentration in the calf. J. Physiol. 318, 407-412.
418	Blackburn, A.M., Fletcher, D.R., Bloom, S.R., Christofides, N.D., Long, R.G., Fitzpatrick, M.L., Baron,
419	J.H., 1980. Effect of neurotensin on gastric function in man. Lancet 1, 987-989.
420	Bueno, L., Fioramonti, J., Fargeas, M.J., Primi, M.P., 1985. Neurotensin: a central neuromodulator of
421	gastrointestinal motility in the dog. Am. J. Physiol. 248, G15-19.
422	Carraway, R., Leeman, S.E., 1975. The amino acid sequence of a hypothalamic peptide, neurotensin. J.
423	Biol. Chem. 250, 1907-1911.
424	Carraway, R., Leeman, S.E., 1976. Characterization of radioimmunoassayable neurotensin in the rat. Its
425	differential distribution in the central nervous system, small intestine, and stomach. J. Biol. Chem.
426	251, 7045-7052.
427	Ciriello, J., Zhang, T.X., 1997. Cardiovascular effects of neurotensin microinjections into the nucleus of
428	the solitary tract. Brain Res. 749, 35-43.
429	Clemens, A., Katsoulis, S., Nustede, R., Seebeck, J., Seyfarth, K., Morys-Wortmann, C., Feurle, G.E.,
430	Folsch, U.R., Schmidt, W.E., 1997. Relaxant effect of xenin on rat ileum is mediated by apamin-
431	sensitive neurotensin-type receptors. Am. J. Physiol. 272, G190-196.
432	Croci, T., Aureggi, G., Guagnini, F., Manara, L., Gully, D., Fur, G.L., Maffrand, J.P., Mukenge, S., Ferla,
433	G., Ferrara, P., Chalon, P., Vita, N., 1999. In vitro functional evidence of different neurotensin-
434	receptors modulating the motor response of human colonic muscle strips. Br. J. Pharmacol. 127.
435	1922-1928.
436	Donelan, J., Boucher, W., Papadopoulou, N., Lytinas, M., Papaliodis, D., Dobner, P., Theoharides, T.C.,
	· · · · · · · · · · · · · · · · · · ·

- 437 2006. Corticotropin-releasing hormone induces skin vascular permeability through a neurotensin438 dependent process. Proc. Nat. Acad. Sci. U. S. A. 103, 7759-7764.
- 439 Evers, B.M., 2002. Endocrine gene neurotensin: molecular mechanisms and a model of intestinal
 440 differentiation. World J. Surg. 26, 799-805.
- 441 Ferris, C.F., 1989. Neurotensin. In: Schultz, S.G., Makhlouf, G. M., Rauner, B. B. (Ed.), Handbook of
 442 Physiology, Section 6, The Gastrointesinal system, Oxford University Press, New York, pp. 559443 586.
- Feurle, G.E., Hamscher, G., Kusiek, R., Meyer, H.E., Metzger, J.W., 1992. Identification of xenin, a
 xenopsin-related peptide, in the human gastric mucosa and its effect on exocrine pancreatic
 secretion. J. Biol. Chem. 267, 22305-22309.
- Feurle, G.E., Hofmann, G., Carraway, R., Baca, I., 1986. Reproduction of postprandial neurotensin plasma
 levels by intravenous neurotensin and the effect of neurotensin on exocrine pancreatic secretion in
 humans. Pancreas 1, 329-334.
- Feurle, G.E., Klein, A., Hamscher, G., Metzger, J.W., Schuurkes, J.A., 1996. Neurokinetic and myokinetic
 effects of the peptide xenin on the motility of the small and large intestine of guinea pig. J.
 Pharmacol. Exp. Therap. 278, 654-661.
- Fletcher, D.R., Shulkes, A., Hardy, K.J., 1985. The effect of neurotensin and secretin on gastric acid
 secretion and mucosal blood flow in man. Regul. Pept. 11, 217-226.
- Groenewald, H.B., 1994. Neuropeptides in the myenteric ganglia and nerve fibres of the forestomach and
 abomasum of grey, white and black Karakul lambs. Onderstepoort J. Vet. Res. 61, 207-213.
- Gully, D., Canton, M., Boigegrain, R., Jeanjean, F., Molimard, J.C., Poncelet, M., Gueudet, C., Heaulme,
 M., Leyris, R., Brouard, A., et al., 1993. Biochemical and pharmacological profile of a potent and
 selective nonpeptide antagonist of the neurotensin receptor. Proc. Nat. Acad. Sci. U. S. A. 90, 6569.
- 461 Hellstrom, P.M., Nylander, G., Rosell, S., 1982. Effects of neurotensin on the transit of gastrointestinal462 contents in the rat. Acta Physiol. Scand. 115, 239-243.
- 463 Helmstaedter, V., Taugner, C., Feurle, G.E., Forssmann, W.G., 1977. Localization of neurotensin464 immunoreactive cells in the small intestine of man and various mammals. Histochemistry 53, 35465 41.
- 466 Hernandez, D.E., Nemeroff, C.B., Prange, A.J., Jr., 1982. Ontogeny of the hypothermic response to
 467 centrally administered neurotensin in rats. Brain Res. 255, 497-501.
- Holzer, P., Bucsics, A., Saria, A., Lembeck, F., 1982. A study of the concentrations of substance P and
 neurotensin in the gastrointestinal tract of various mammals. Neuroscience 7, 2919-2924.
- 470 Huidobro-Toro, J.P., Kullak, A., 1985. Excitatory neurotensin receptors on the smooth muscle of the rat
 471 fundus: possible implications in gastric motility. Br. J. Pharmacol. 84, 897-910.
- 472 Kitabgi, P., Freychet, P., 1978. Effects of neurotensin on isolated intestinal smooth muscles. Eur. J.473 Pharmacol. 50, 349-357.

- 474 Kitabgi, P., Vincent, J.P., 1981. Neurotensin is a potent inhibitor of guinea-pig colon contractile activity.
 475 Eur. J. Pharmacol. 74, 311-318.
- Kitamura, N., Yamada, J., Calingasan, N.Y., Yamashita, T., 1985. Histologic and immunocytochemical
 study of endocrine cells in the gastrointestinal tract of the cow and calf. Am. J. Vet. Res. 46, 13811386.
- Konturek, S.J., Jaworek, J., Cieszkowski, M., Pawlik, W., Kania, J., Bloom, S.R., 1983. Comparison of
 effects of neurotensin and fat on pancreatic stimulation in dogs. Am. J. Physiol. 244, G590-598.
- 481 Kubo, T., Kihara, M., 1990. Modulation of the aortic baroreceptor reflex by neuropeptide Y, neurotensin
 482 and vasopressin microinjected into the nucleus tractus solitarii of the rat. Naunyn-Schmiedeberg's
 483 Arch. Pharmacol. 342, 182-188.
- Lee, J., Kim, Y.D., Park, C.G., Kim, M.Y., Chang, I.Y., Zuo, D.C., Shahi, P.K., Choi, S., Yeum, C.H., Jun,
 J.Y., 2012. Neurotensin modulates pacemaker activity in interstitial cells of Cajal from the mouse
 small intestine. Mol. Cells 33, 509-516.
- Li, H., Chen, J.H., Yang, Z., Huang, M., Yu, Y., Tan, S., Luo, H., Huizinga, J.D., 2016. Neurotensin Changes
 Propulsive Activity into a Segmental Motor Pattern in the Rat Colon. J. Neurogastroenterol. Mot.
 22, 517-528.
- Mule, F., Serio, R., Postorino, A., 1995. Motility pattern of isolated rat proximal colon and excitatory action
 of neurotensin. Eur. J. Pharmacol. 275, 131-137.
- 492 Mule, F., Serio, R., Postorino, A., Vetri, T., Bonvissuto, F., 1996. Antagonism by SR 48692 of mechanical
 493 responses to neurotensin in rat intestine. Br. J. Pharmacol. 117, 488-492.
- Nemeroff, C.B., Hernandez, D.E., Luttinger, D., Kalivas, P.W., Prange, A.J., Jr., 1982a. Interactions of
 neurotensin with brain dopamine systems. Ann. New York Acad. Sci. 400, 330-344.
- 496 Nemeroff, C.B., Hernandez, D.E., Orlando, R.C., Prange, A.J., Jr., 1982b. Cytoprotective effect of centrally
 497 administered neurotensin on stress-induced gastric ulcers. Am. J. Physiol. 242, G342-346.
- 498 Ogawa, W.N., Baptista, V., Aguiar, J.F., Varanda, W.A., 2005. Neurotensin modulates synaptic transmission
 499 in the nucleus of the solitary tract of the rat. Neuroscience 130, 309-315.
- 500 Onaga, T., Hara, N., Shimizu, Y., 2009. Role of nitrergic nerves in the regulation of motility of the omasum
 501 and abomasum in healthy sheep (Ovis aries). Vet. Res. Commun. 33, 33-48.
- 502 Onaga, T., Harada, Y., Okamoto, K., 1998. Pituitary adenylate cyclase-activating polypeptide (PACAP)
 503 induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regul. Pept. 77,
 504 69-76.
- 505 Onaga, T., Kubagawa, S., Lee, S., Mineo, H., Kato, S., Naruse, S., Ozaki, T., 1997a. Role of peptide YY in
 506 regulation of duodenal motility during the interdigestive period in sheep. J. Comp. Physiol. B 167,
 507 352-360.
- 508 Onaga, T., Mineo, H., Kato, S., 1997b. Effect of L364718 on interdigestive pancreatic exocrine secretion
 509 and gastroduodenal motility in conscious sheep. Regul. Pept. 68, 139-146.
- 510 Onaga, T., Onodera, T., Mineo, H., Kato, S., 1995. Cholecystokinin does not act on the efferent pathway of

- 511 cholinergic and adrenergic nerves to inhibit ruminal contractions in sheep (Ovis aries). Comp.512 Biochem. Physiol. A 111, 51-58.
- 513 Onaga, T., Yoshida, M., Inoue, H., Yokota, H., 2000. Regional distribution and plasma concentration of
 514 peptide YY in sheep. Peptides 21, 655-667.
- 515 Onaga, T., Zabielski, R., Kato, S., 2002. Multiple regulation of peptide YY secretion in the digestive tract.
 516 Peptides 23, 279-290.
- 517 Papadopoulos, G.C., Karamanlidis, A.N., Antonopoulos, J., Dinopoulos, A., 1986. Neurotensinlike
 518 immunoreactive neurons in the hedgehog (Erinaceus europaeus) and the sheep (Ovis aries) central
 519 nervous system. J. Comp. Neurol. 244, 193-203.
- Read, N.W., McFarlane, A., Kinsman, R.I., Bates, T.E., Blackhall, N.W., Farrar, G.B., Hall, J.C., Moss, G.,
 Morris, A.P., O'Neill, B., et al., 1984. Effect of infusion of nutrient solutions into the ileum on
 gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology 86,
 274-280.
- Reinecke, M., 1985. Neurotensin. Immunohistochemical localization in central and peripheral nervous
 system and in endocrine cells and its functional role as neurotransmitter and endocrine hormone.
 Prog. Histochem. Hytochem. 16, 1-172.
- 527 Rosell, S., Rokaeus, A., 1979. The effect of ingestion of amino acids, glucose and fat on circulating
 528 neurotensin-like immunoreactivity (NTLI) in man. Acta Physiol. Scand. 107, 263-267.
- Ruckebusch, Y., 1989. Gastrointestinal motor functions in ruminants. In: Schultz, S.G., Wood, J.D., Rauner,
 B.B. (Eds.), The Handbook of Physiology, Section 6: The gastrointestinal system, Oxford
 University Press, New York, pp. 1225-1282.
- 532 Shibata, M., Osman, A. H., 1988. Feeding value of oil palm by-products. Jpn. Agr. Res. Quort. 22, 77-84.
- Sumners, C., Phillips, M.I., Richards, E.M., 1982. Central pressor action of neurotensin in conscious rats.
 Hypertension 4, 888-893.
- 535 Theodorsson-Norheim, E., Rosell, S., 1983. Characterization of human plasma neurotensin-like
 536 immunoreactivity after fat ingestion. Regul. Pept. 6, 207-218.
- 537 Tomkins, T., Drackley, J.K., 2010. Applications of palm oil in animal nutrition. J. Oil Plam Res. 22, 835538 845.
- Tyler-McMahon, B.M., Stewart, J.A., Farinas, F., McCormick, D.J., Richelson, E., 2000. Highly potent
 neurotensin analog that causes hypothermia and antinociception. Eur. J. Pharmacol. 390, 107-111.
- 541 Uhl, G.R., Goodman, R.R., Snyder, S.H., 1979. Neurotensin-containing cell bodies, fibers and nerve
 542 terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res. 167, 77-91.
- 543 Vincent, J.P., 1995. Neurotensin receptors: binding properties, transduction pathways, and structure. Cell.
 544 Mol. Neurobiol. 15, 501-512.
- 545 Vincent, J.P., Mazella, J., Kitabgi, P., 1999. Neurotensin and neurotensin receptors. Trends in Pharmacol.
 546 Sci. 20, 302-309.
- 547 Walker, J.P., Khalil, T., Wiener, I., Fagan, C.J., Townsend, C.M., Jr., Greeley, G.H., Jr., Thompson, J.C.,

- 548 1985. The role of neurotensin in human gallbladder motility. Ann. Surg. 201, 678-683.
- Wang, X.M., Evers, B.M., 1999. Characterization of early developmental pattern of expression of
 neurotensin/neuromedin N gene in foregut and midgut. Dig. Dis.Sci. 44, 33-40.
- Wen, J., Phillips, S.F., Sarr, M.G., Kost, L.J., Holst, J.J., 1995. PYY and GLP-1 contribute to feedback
 inhibition from the canine ileum and colon. Am. J. Physiol. 269, G945-952.
- Zhang, L., Xing, L.P., Demers, L., Washington, J., Kauffman, G.L., Jr., 1989. Central neurotensin inhibits
 gastric acid secretion: an adrenergic mechanism in rats. Gastroenterology 97, 1130-1134.
- 555
- 556
- 557

558 Figure captions

559	Fig. 1	Representative records of the effects of i.v. injection of NT on ovine gastric motility.
560		The intraluminal pressure of the caudal dorsal blind sac of the rumen, omasal canal, abomasal
561	corpu	s and antrum and EMG activity in the greater curvature of the omasum were recorded in seven
562	consc	ious sheep. After a control period for 40 minutes, NT was injected into the jugular vein at 0.3, 1,
563	and 3	nmol/kg. Horizontal and vertical bars indicate scales for time and pressure or voltage, respectively.
564		
565	Fig. 2	Effects of intravenous injection of NT on motility in the rumen in sheep.
566		After a control period for 40 minutes, a bolus of NT was injected into the jugular vein at 0.3, 1,
567	and 3	nmol/kg, and recording was continued for 50 min. Data indicate changes in the raw value in mean
568	basal j	pressure of the rumen (top), and frequency (middle) and mean amplitude (bottom) of the cyclic
569	prima	ry contractions of the rumen. Significant differences from the value immediately before NT
570	injecti	on are indicated by asterisks (*, $p < 0.05$; **, $p < 0.01$; ***, $p < 0.001$). Bar graphs indicate the
571	incren	nents for the 15 minutes between before and after the injection, and significant changes against a
572	contro	l saline injection are indicated by asterisks (*, $p < 0.05$; **, $p < 0.01$). Mean ± SEM ($n = 7$).
573		
574	Fig. 3	Effects of intravenous injection of NT on motility in the omasum and abomasum in sheep.
575		The intraluminal pressure of the omasal canal, abomasal corpus and antrum was recorded. The
576	motili	ty of the greater curvature of the omasum was measured by EMG. After a control period of 40

577	minutes, a bolus of NT was injected into the jugular vein at 0.3, 1, and 3 nmol/kg, and recording was
578	continued for 50 minutes. Data indicate temporal changes per 5 minutes in intraluminal pressure in the
579	omasal canal and the corpus and antrum of the abomasum, and spike frequency in EMG activity of the
580	greater curvature of the omasum. Mean \pm SEM (intraluminal pressure; n = 7, EMG; n = 5). Significant
581	differences are shown by closed markers with asterisks (*, $p < 0.05$; **, $p < 0.01$, ***, $p < 0.001$) for
582	each time point.
583	
584	Fig. 4 Increments in motility indices after intravenous injection of NT in the omasum and abomasum.
585	Integrals of motility indices as an increment for the 15 minutes before after the NT injection are
586	indicated. Mean \pm SEM (intraluminal pressure; n = 7, EMG; n = 5).
587	
588	Fig. 5 Effect of SR 48692 on NT-induced inhibition of cyclic ruminal contractions.
589	After a control period of 40 minutes, a bolus of NT was injected into the jugular vein at 1 nmol/kg
590	with and without pre-administration of SR 48692 (SR) at 60 nmol/kg (i.v.). SR 48692 alone was injected
591	as the second control experiment. Data in the line graphs indicate changes in mean amplitude (top) and
592	frequency (bottom) of the cyclic primary contractions of the rumen. Significant differences from the
593	value immediately before NT injection are indicated by asterisks (*, $p < 0.05$; **, $p < 0.01$). Data in the
594	bar graphs indicate changes in the parameters as an increment for the 15 minutes against the pre-
595	injection period. Bars marked with different letters indicate significant differences (p < 0.05). Mean \pm

596 SEM (n = 5).

598	Fig. 6 Effects of NT application on BCh-induced contractions of the ruminal muscle strips.
599	Two minutes after BCh application at 10 μ mol/L to longitudinal (LM) and circular muscle strips
600	(CM) of the rumen dorsal sac, NT was cumulatively applied at 0.3-10 μ mol/L at 1-minute intervals.
601	Changes in isometric contractions were compared with (B) and without NT application (A). Horizontal
602	and vertical bars indicate scales for time and tension, respectively. Changes in isometric contraction at
603	the end of each application period were compared against tension before NT application for the first
604	application of BCh (C). Mean \pm SEM (n = 6-7).
605	
606	Fig. 7 Effects of NT application on EFS-induced contractions of the ruminal muscle strips.
607	A: Representative records of the effects of the cumulative application of NT on EFS-induced
608	contractions of smooth muscle strips of the ovine rumen. EFS was applied to longitudinal (LM) and
609	circular smooth muscle (CM) strips of the ovine rumen dorsal sac for 10 seconds at 2-minute intervals.
610	After four control EFS-evoked contractions, NT was cumulatively applied at $0.1-10 \mu$ mol/L at 6-minute
611	intervals and three EFS-evoked contractions were recorded for each NT concentration. After NT
612	application, SR 48692 was applied at 100 µmol/L. As a control experiment, EFS were performed
613	without NT application following the above procedure. Failure of EFS due to shortened duration is
614	shown by artifact (af). EFS-evoked contractions were inhibited by the final application of lidocaine at

615 1 mmol/L. B: Changes in isotonic contraction were compared against the first EFS-evoked contraction

616 without NT. Horizontal and vertical bars indicate scales for time and contraction, respectively.

- 617 Significant differences from the control value are indicated by asterisks (*, p < 0.05; ***, p < 0.001).
- 618 Mean \pm SEM (n = 6-8).

---- SR 48692 60nmol/kg

----- NT 1 nmol/kg ----- SR 48692 60 nmol/kg + NT 1 nmol/kg

