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Abstract: Serotonin is a neurotransmitter involved in various physiological processes in the
central and peripheral nervous systems. Serotonin is also a precursor for melatonin biosynthesis,
which mainly occurs in the pineal gland of vertebrates. Tryptophan hydroxylase (TPH) acts as the
rate-limiting enzyme in serotonin biosynthesis and is the initial enzyme involved in the synthesis
of melatonin. Recently, two enzymes—TPH1 and TPH2—were reported to form the TPH family in
vertebrates and to play divergent roles in serotonergic systems. Here, we examined the evolution
of the TPH family from 70 vertebrate genomes. Based on the sequence similarity, we extracted
184 predicted tph homologs in the examined vertebrates. A phylogenetic tree, constructed on the
basis of these protein sequences, indicated that tph genes could be divided into two main clades
(tph1 and tph2), and that the two clades were further split into two subgroups of tetrapods and
Actinopterygii. In tetrapods, and some basal non-teleost ray-finned fishes, only two tph isotypes exist.
Notably, tph1 in most teleosts that had undergone the teleost-specific genome duplication could be
further divided into tph1a and tph1b. Moreover, protein sequence comparisons indicated that TPH
protein changes among vertebrates were concentrated at the NH2-terminal. The tertiary structures of
TPH1 and TPH2 revealed obvious differences in the structural elements. Five positively selected sites
were characterized in TPH2 compared with TPH1; these sites may reflect the functional divergence in
enzyme activity and substrate specificity. In summary, our current work provides novel insights into
the evolution of tph genes in vertebrates from a comprehensive genomic perspective.

Keywords: tryptophan hydroxylase (TPH); serotonin; melatonin biosynthesis; phylogenetic analysis;
molecular evolution; positive selection; vertebrate

1. Introduction

As one of the major monoaminergic neurotransmitters in the central nervous system, serotonin is
involved in various physiological processes, such as the regulation of appetite, aggressiveness,
body temperature, fear, mood, pain, reproduction, sleep, and vascular functions [1,2]. Before it becomes
a neurotransmitter, serotonin also influences the development and maturation of the mammalian
brain [3]. In addition, serotonin acts as a precursor for the synthesis of melatonin, which is mainly

Genes 2019, 10, 203; doi:10.3390/genes10030203 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0002-0136-7387
https://orcid.org/0000-0001-7441-1097
https://orcid.org/0000-0002-6358-976X
http://www.mdpi.com/2073-4425/10/3/203?type=check_update&version=1
http://dx.doi.org/10.3390/genes10030203
http://www.mdpi.com/journal/genes


Genes 2019, 10, 203 2 of 21

produced in the pineal gland of vertebrates. Tryptophan hydroxylase (TPH, EC 1.14.16.4) is the
rate-limiting enzyme for serotonin biosynthesis and is the initial activated enzyme in melatonin
synthesis. TPH transforms tryptophan (Trp) into 5-hydroxytryptophan (5-HTP) [4], and subsequently,
5-HTP is catalyzed to serotonin (5-hydroxytryptamine, 5-HT) by L-aromatic amino acid decarboxylase
(AAAD, EC 4.1.1.28) [5]. Serotonin is further catalyzed by aralkylamine N-acetyltransferase (AANAT,
EC 2.3.1.87) [6] and acetylserotonin-O-methyltransferase (ASMT; EC 2.1.1.4) [7] to finally generate
melatonin (MT; see Figure 1).
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Figure 1. Schematic representation of the two serotonin systems in vertebrates. The top part
denotes the process of serotonin biosynthesis, which is also the first two steps in melatonin synthesis.
The middle part (in the circles) summarizes the functions regulated by the two serotonin systems.
The bottom part interprets the last two steps for melatonin synthesis. 5-HT, 5-hydroxytryptamine;
AAAD (AADC), L-aromatic amino acid decarboxylase; AANAT, aralkylamine N-acetyltransferase;
ASMT, acetylserotonin-O-methyltransferase; HIOMT, hydroxyindole-O-mehyltransferase; MT,
melatonin; NAS, N-acetylserotonin; TPH, tryptophan hydroxylase.

Tryptophan hydroxylase belongs to the superfamily of aromatic amino acid hydroxylase that
includes tyrosine hydroxylase (TH) and phenylalanine hydroxylase (PAH) [8]. Compared with the
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increasing number of reports concerning the families of TH and PAH [9–12], studies of TPH appear
sparse [13,14], and a comprehensive investigation in vertebrates is unavailable at present. For more
than a decade, the TPH family was initially thought to have only one member. However, in 2003,
Walther et al. knocked out the tph gene (now called tph1) in mice. Surprisingly, they discovered
that the tph1-deficient mice lacked serotonin in the pineal gland and certain peripheral tissues
(such as gut and blood). They also observed that the serotonin content in the brainstem of the
tph1-deficient mice was slightly reduced in comparison to the wild type, suggesting the existence
of another tph member contributing to the stable concentration of serotonin in the brainstem [13].
Subsequently, they discovered and verified a novel member of the TPH family that they named tph2,
and thus the classical tph gene was renamed tph1. It has been shown that tph1 is mainly distributed
in the pineal gland and peripheral gut, spleen, and thymus; tph2 is predominantly expressed in
structures of the central nervous system, such as the brainstem [15]. As summarized in Figure 1,
there are two independent serotonin systems in vertebrates that are regulated by two different TPH
enzymes. Therefore, these serotonin systems regulated by tph1 and tph2 have distinct functions.
tph1 usually plays important roles in peripheral effects such as hemostasis, the immune system,
melatonin synthesis, migraine, and vasoconstriction; tph2 is involved in effects of the central nervous
system, such as aggression, anxiety, depression, epilepsy, food intake, migrate and sleep. Only the
pathogenesis of migraine may involve both serotonin systems (the overlapped middle part in Figure 1).

Fish are the most diverse vertebrate taxa, and their serotonergic neurons can be identified
based on corresponding 5-HT levels. A previous review [16] described tph as a specific marker
for 5-HT generation. Teleosts experienced an episode of whole genome duplication (WGD)
approximately 320 million years ago (Mya) [17,18], resulting in the duplication of certain genes
related to 5-HT. After the WGD event, however, these duplicated genes occasionally were lost or
became pseudogenes [19]. Hence, more tph copies (tph1a, tph1b, and tph2) have been reported in teleost
species such as zebrafish, sticklebacks, and medaka [16,20].

Two members (tph1 and tph2) of the TPH family with distinct catalytic activity or substrate
specificity had been reported previously [13]. Certain studies already indicated that distinct
functions of different family members may have originated from different selection pressures during
evolution [21,22]. Investigations of codon substitutions within vertebrate groups also suggested that
certain protein families had experienced positive selection, which was considered as an important
driving force in protein evolution both from structural and functional views [23–25]. To date,
although additional copies of tph have been reported in fishes, a detailed phylogenetic analysis
of these tph members among teleosts and tetrapods is lacking, and functional changes related to
possible positive selection on different tph copies is poorly understood.

In the present study, we focused on 70 vertebrate species with high-quality genome
assemblies for extraction of their tph family members. Meanwhile, we examined a number of
special teleosts that possess some unique living habitats: cavefish (Sinocyclocheilus anshuiensis,
Sa), amphibious mudskippers (blue-spotted Boleophthalmus pectinirostris (BP) and giant-fin
Periophthalmus magnuspinnatus (PM)), migratory fish (Atlantic salmon (Salmo salar), and rainbow trout
(Oncorhynchus mykiss)). We constructed a comprehensive phylogenetic tree from encoding sequences
and implemented synteny analysis among the examined species. Sequence and structural divergences
between different TPH members were also compared. Moreover, the biochemical and structural
properties of possible positively selected sites in the TPH family were summarized. We attempted
to answer the following questions. (1) What are the main structural differences in different members
of the TPH family among various taxa of vertebrates? (2) Have some species experienced loss of
certain tph member(s) during evolution? (3) Did positive selection affect functional changes of the TPH
members during evolution?
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2. Materials and Methods

2.1. Sequence Collection

In this study, a total of 70 vertebrate genomes were chosen to extract tph genes. Genome sequences
of 68 species, including 11 mammals, 18 aves, 9 reptiles, 3 amphibians, and 27 Actinopterygii,
with high-quality assemblies, were downloaded from the National Center for Biotechnology
Information (NCBI), with the exception of two fish species (the American paddlefish and the
Chinese sturgeon), which were assembled based on Illumina and PacBio sequencing using Platanus
(version 1.2.4 [26], parameters: −k 31 −s 10 −a 10 −u 0.1 −d 0.4) and DBG2OLC (default version, [27],
parameters: k 17 KmerCovTh 6 MinOverlap 80 AdaptiveTh 0.012 RemoveChimera 1) by our
lab (Table S1). To further collect the entire length of tph1 and tph2 coding sequences in each
genome, those reported and verified tph genes in human (Homo sapiens), chicken (Gallus gallus),
painted turtle (Chrysemys picta bellii), African clawed frog (Xenopus laevis), and zebrafish (Danio rerio)
were downloaded from NCBI as the queries. In general, we selected the sequences from organisms
close to the target species as the queries; for most sequences of tph2 in the amphibians we used human
tph2 (NP_775489.2) as the query. Detailed information concerning the queries is provided in Table S2.

We constructed a local database for each genome and subsequently aligned the sequences through
BLAST (version 2.2.28) [28] using the protein-nucleotide aligned strategy with an E-value of 10−5.
The alignment results were further processed by a Perl script to obtain the best hit of each alignment.
Finally, EXONERATE (version 2.2.0) [29] was employed to predict the full length of each tph gene.

2.2. Sequence Alignment and Phylogenetic Reconstruction

The predicted nucleotide sequences of tph genes were initially used for multiple codon-based
alignments using the Muscle module in MEGA (version 7.0) [30] and, subsequently, were translated to
protein sequences for phylogenetic analyses. ProtTest (version 3.4.2) [31] was used to predict amino
acid (aa) substitutions under the Akaike information criterion (AIC). The parameters within the best
amino acid substitution of JTT+I+G were input to PhyML (version 3.1) [32] to construct phylogenetic
topologies using maximum likelihood (ML) with 1000 bootstrap replicates for the evaluation of their
branch supports.

To further confirm the topology yielded by ML, our alignment sequences were also analyzed
using Bayesian inference (BI) in MrBayes (version 3.2.6) [33]. We conducted two independent Bayesian
searches for 1 × 106 generations with one cold chain and three heated chains per run, and every
100 generations was sampled for each run. The initial 25% of the runs were discarded as a burn-in.
A consensus tree was generated with the remaining runs, and Bayesian posterior probabilities were
calculated to evaluate the branch supports. The maximum clade credibility tree was identified from
the remaining samples using TreeAnnotator (version 1.7.5) [34].

2.3. Identification of Conserved Synteny

To examine the conservation of tph genes in vertebrates, we searched several genes located
upstream and downstream of each tph paralog within tetrapods and teleosts through Ensemble
datasets. Those genes located upstream and downstream of each tph paralog in humans and zebrafish
were employed as the reference sequences for searching syntenic locations in the tetrapod and teleost
sequences, respectively. Subsequently, we employed the protein aligned to nucleotides strategy to
examine these extracted synteny genes in tetrapods and teleosts. Genome assemblies of different
species were searched using BLAST with an E-value cutoff at 10−5. The best hit was used to identify
an occurrence of a collinear gene among the examined species.

2.4. Detection of Differences between TPH Protein Sequences

We first selected the two human TPH isoforms to perform the alignment, and then analyzed
the differences between TPH1 and TPH2. To further analyze secondary structures of these TPH
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proteins, we also downloaded the common human TPH1 (5L01) and TPH2 (4V06) protein templates
from the Protein Data Bank (PDB) for comparing the differences between TPH1 and TPH2 in
vertebrates. One or two representative species from each class were chosen to align with the
human TPH1 and TPH2 templates. The examined species included cattle (Bos taurus), chicken,
zebra finch (Taeniopygia guttata), American alligator (Alligator mississippiensis), Chinese alligator
(A. sinensis), tropical clawed frog (Xenopus tropicalis), African clawed frog, zebrafish, amphibious
teleosts (mudskippers), a Sinocyclocheilus cavefish (Sa), and tetraploid Sinocyclocheilus fish (Sg and
Sr). Previous studies had reported that teleosts such as zebrafish possessed two tph1 genes (tph1a
and tph1b) [20]; thus, we further chose some representative species from the teleosts to identify
the differences between TPH1a and TPH1b. All the alignment results were colorized by TEXshade
(version 1.24) [35].

2.5. Prediction of Tertiary Structures of TPH Proteins

To understand whether these possible variations could shape the tertiary structures, we predicted
the tertiary structure and function of each TPH protein in zebrafish, chicken, and one mudskipper (BP)
using SWISS-MODEL [36], an online modeling tool for automated comparison of protein homology.
We first uploaded our target sequences and searched for a template that best matched our target
sequences in terms of coverage and identity. The best templates of the TPH protein model in human
(TPH1: 5L01; TPH2: 4V06) from PDB were downloaded to compare the tertiary structure differences
among TPH1a, TPH1b, and TPH2. We subsequently conducted model–template alignment for
structural comparisons. Finally, PyMOL (version 2.2) [37] was applied to visualize the predicted
TPH protein tertiary structures, and these were adjusted in a similar pattern to identify variations.

2.6. Identification of Putative Positively Selected Sites

To evaluate variation in selection pressure between lineages of TPH1 and TPH2, we selected
a subset of five species from those shown in Figure S1 to represent the five groups of vertebrates,
and we constructed a BI tree for selection pressure analyses. We estimated the ratio of dN/dS
(ratio of nonsynonymous substitutions (dN) to that of synonymous substitutions (dS)) under two
prior assumptions using branch models in the CODEML modules of PAML (version 4) [38]. We first
ran a one-ratio model for which oneω value was assumed for all clades. We then ran a two-ratio model
for which ω values could change between the TPH1 clade and the TPH2 clade (setting the TPH2 clade
as an independently varying targetω2; setting the TPH1 clade as the constantω1). Likelihood ratio
(LR) tests and Chi-square (χ2) tests were conducted by comparing the probabilities of the one-ratio and
two-ratio models to verify which model best fit the data [39]. Finally, a branch-site model, allowing ω
to have more than one change in the target branches, was used to identify which codon(s) had likely
undergone positive selection. Those sites with significance (p-value less than 0.05) based on the
Empirical Bayes method [40] were regarded as positively selected.

3. Results

3.1. Variation of tph Copy Number in Vertebrates

A total of 184 tph nucleotide sequences, including 105 tph1 (37 tph1a and 26 tph1b in teleosts, and 42
tph1 in tetrapods and non-teleosts) and 79 tph2 were successfully derived from 70 vertebrate species
(see Table 1). These sequences and their encoding protein sequences were pooled for further analysis.
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Table 1. Distribution of the tryptophan hydroxylase (TPH) family in the selected vertebrate genomes.

Class Species Number tph1 (tph1a) tph1b tph2

Mammals 11 11 0 11
Birds 18 18 0 18

Reptiles 9 9 0 9
Amphibians 3 4 0 4

Actinopterygii 29 37 26 37
Total 70 79 26 79

In this study, we determined that mammals, birds, reptiles, amphibians, and some basal
non-teleost ray-finned fishes, such as the spotted gar, American paddlefish, and Chinese sturgeon,
had two tph isotypes (tph1 and tph2). For most tetrapods, we observed only one copy of tph1 and one
copy of tph2, the one exception being the African clawed frog that had two copies of both tph1 and
tph2 (see Figure 2 and Table S3). Two copies of tph1 and tph2 in the American paddlefish and eight
copies of tph1 and five copies of tph2 in the Chinese sturgeon were also identified.
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Figure 2. Phylogenetic trees and genome synteny of tph1 and tph2 in vertebrates. (a) The phylogenetic
tree was generated from 105 TPH1 protein sequences (the left part), and the synteny data of tph1
(the right part) are presented for confirmation. (b) The phylogenetic tree was generated from 79
TPH2 protein sequences (the left part), and the synteny data of tph2 (the right part) are presented for
validation. Numbers on the branches from left to right are bootstrap values generated in the PhyML
reconstruction and the Bayesian posterior probabilities obtained in the Bayesian inference, respectively.
The bootstrap values under 60% and posterior probabilities less than 0.65 are not shown.

Previous studies reported the existence of three tph members (defined as tph1a, tph1b, and tph2)
in teleosts such as zebrafish, medaka, and sticklebacks [16,20]. In our current work, we further
strengthened the finding that most teleosts with the teleost-specific genome duplication (TSGD)
presented three tph isotypes (tph1a, tph1b, and tph2) with the exception of the Asian arowana (Scleropages
formosus), fugu (Takifugu rubripes), Northern pike (Esox lucius), and tongue sole (Cynoglossus semilaevis),
for which we failed to find tph1b. In addition, certain tetraploid fishes that had undergone more than
one WGD event, such as the Chinese golden-line fish (Sa, Sr, and Sg), had five tph copies (not the
expected six); no duplicates of tph1a were identified. Other typical tetraploid teleosts such as the
rainbow trout and Atlantic salmon had four copies of the tph genes, but the duplicated tph1a and tph2
loci were not found (Figure 2 and Table S3).

3.2. Phylogenetic Relationships among the tph Genes in Vertebrates

To understand the relationships among these tph genes in vertebrates, we constructed a robust
phylogenentic tree based on the Bayesian inference (BI) method from the deduced 184 TPH protein
sequences. The TPH2 protein sequence from the elephant shark (Callorhynchus milii) was employed



Genes 2019, 10, 203 8 of 21

as the outgroup. According to the well-supported phylogenetic topology (Figure S1), all tph genes
could be divided into two main groups (tph1 and tph2), and both groups were further divided into two
subgroups of tetrapods and Actinopterygii (Figure S1). The tetrapod subgroup was further divided
into four main clades (amphibians, mammals, reptiles, and birds).

To avoid overestimation based on the BI method, we also performed a phylogenetic analysis (the
left areas of Figure 2a,b) using the maximum likelihood (ML) method on 105 TPH1 and 79 TPH2 protein
sequences. We observed that the topologies generated from both ML and BI were similar, indicating
a relative stability of the phylogenetic trees. Finally, we employed the ML tree for presentation, and the
Bayesian posterior probabilities from the BI analysis were labeled onto each node to indicate the degree
of support (Figure 2).

Based on these results, we determined that both tph1 and tph2 were divided into two main clades,
one for tetrapods and another for Actinopterygii. We detected in tetrapods and some basal non-teleost
ray-finned fishes, namely, the spotted gar, American paddlefish, and Chinese sturgeon, only one isform
of tph1. Notably, tph1, in the majority of teleosts that had undergone TSGD, could be further divided
into tph1a and tph1b (see more details in the left part of Figure 2a).

3.3. Synteny Data

Our synteny data demonstrated that tph1a, tph1b, and tph2 share a conserved suite of genes
bounding the sequences in both sides, although several genes were not identified in certain species.
Genes located upstream and downstream of tph between tetrapods and Actinopterygii were different.
In general, seven genes (gtf2h1, hps5, kcnc1, nucb2, saal1, sergef, and ush1c) were in the neighborhood of
the tph1 gene in tetrapods. Among these seven genes, only two, saal1 and sergef, were identified near the
tph1 gene in Actinopterygii. Similarly, seven genes (ap4e1, cyp19a1, fibina, gnb5a, saal1, sergef, and ucmab)
were identified near tph1a, and seven genes (ano9b, ccne1, cd81a, fibinb, pkp3b, saal1, and znf536) were
identified near tph1b in Actinopterygii. However, only fibina and saal1 were common to the loci
neighboring tph1a and tph1b (see more details in the right part of Figure 2a). The genes located near
tph2 differed between tetrapods and Actinopterygii. Seven genes (caps2, lgr5, rab21, tbc1d15, tmem19,
tspan8, and zfc3h1) and seven genes (ampd3b, cpne8, gpia, swap70b, tbc1d15, trhr2, and znf143b) were
located near tph2 in tetrapods and Actinopterygii, respectively. Only tbc1d15 was shared between
tetrapods and Actinopterygii (see the right part of Figure 2b). In non-teleost ray-finned fishes such as
sturgeons and paddlefishes, many genes near to tph were not identified in teleosts. However, the genes
adjacent to tph throughout the tetrapods were identified to a greater degree than in ray-finned fishes
based on the results of synteny analyses, indicating that the adjacent regions in tetrapods were more
conservative than those in ray-finned fishes (see more details in the right areas of Figure 2).

3.4. Sequence Variations and Secondary Structures of the tph Genes

We first aligned the protein sequences of human tph1 and tph2, which were located on
chromosomes 11 and 12, respectively. Depending on the alignment results, we observed that TPH1 and
TPH2 were highly conserved in humans, while TPH2 has an extra length of 41 aa at the NH2-terminal
(Figure 3). Ser 19 in TPH2 and Ser 58 in TPH1 have been reported as two of the most important
phosphorylation sites [13,41]. The TPH enzymes are activated through phosphorylation, and then
the phosphorylated TPHs bind to 14-3-3 proteins (a family of acidic, highly homogenous proteins)
to increase the stability of these enzymes against degradation [42]. Thus, the absent region in TPH1
in comparison to TPH2 may imply functional divergence despite the existence of other conserved
sequence features. The phosphorylation site of Ser 58 in TPH1 was also conserved in TPH2, while TPH2
had an additional phosphorylation site at Ser 19, which may suggest that TPH2 would be more stable
and have stronger inhibition of dephosphorylation compared with TPH1. Both TPH1 and TPH2 have
a conserved pentapeptide (Val–Pro–Trp–Phe–Pro) catalytic domain that begins at the residue 151 of
human TPH2 (see Figure 3).
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Figure 3. Alignment of human TPH1 and TPH2 protein sequences. Important residues include the
mutation region (in the NH2-terminal red box), phosphorylation sites (dashed lines with red arrows),
and catalytic domains (‡ with the red box).

To provide estimates for the divergence of TPH1 and TPH2 in vertebrates, we aligned the human
structural templates of 5L01 and 4V06 with TPH1 and TPH2 from different species. TPH2 sequences
from six representative species in vertebrates were selected to perform the alignment using human
TPH2 as the template. We found that variations of TPH2 in the examined vertebrates were mainly
present in the NH2-terminal and in residues around the first α-helix. The mutation regions of TPH2
among vertebrates are marked with the rose box in Figure 4a. Seven phosphorylation sites (S19, K79,
S104, Y249, Y252, S382, and S392) in TPH2, according to the human template, are marked with red
boxes in Figure 4a. Among these phosphorylation sites, K79 in humans was changed to Q79 in the
amphibians and to R79 in the amphibious mudskippers (BP and PM); S104 in humans was changed to
N104 in teleosts; and Y249 in humans was also changed to H249 in teleosts. In general, these TPH2
protein sequences contained one Biopterin_H- and one Biopterin-dependent aromatic amino acid
hydroxylase (BDAAAH) domain, and their secondary structures consisted of 17 α-helices and 10
β-strands (Figure 4a). Alignment and secondary structures of TPH2 in additional vertebrate species
are provided in Figure S2.
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Figure 4. Alignment and secondary structures of TPH protein sequences in vertebrates. (a) TPH2
protein sequences from representative vertebrate species were aligned with the human TPH2
and its secondary structure template 4V06. (b) Sequence alignment between TPH1a and TPH1b
in some representative teleosts is provided for comparison. (c) TPH1 protein sequences from
representative vertebrates were aligned with the human TPH1 and its secondary structure template
5L01. The mutation regions are marked with rose boxes and upper arrows in each figure. The red boxes
denote the phosphorylation sites based on the human templates. Related alignment and secondary
structures in more vertebrate species are provided in Figure S2.

As mentioned above, most teleosts that had undergone TSGD had two isotypes of tph1 named
tph1a and tph1b. To further detect the differences between tph1a and tph1b, we selected two
representative species from the teleosts to perform the alignment with the human TPH1 (protein ID:
5L01) as the template. TPH1a contains 483 aa, while TPH1b contains 480 aa. TPH1a has two aa (LG or
IG) inserted at sites 20 and 21 and one aa of N inserted at site 47 compared to TPH1b. These three
insertion sites in TPH1a are marked with rose boxes in Figure 4b. Many variable sites between TPH1a
and TPH1b were also identified near the first α-helix. However, the phosphorylation sites (marked
within red boxes) are almost identical between TPH1a and TPH1b. In general, the domain regions
were highly conserved between TPH1a and TPH1b in teleosts (Figure 4b). Alignment and secondary
structures of TPH1a and TPH1b in additional teleost species are presented in Figure S2.

Similarly, alignment of TPH1 proteins in five representative species of vertebrates is shown in
Figure 4c. The alignment indicated that fishes, amphibians, and reptiles had about 39 more aa compared
with mammals and birds at the NH2-terminal. Eight phosphorylation sites (K33, S58, T205, S228, S260,
Y373, Y401, and Y404 in TPH1) are marked with red boxes in Figure 4c. Among these phosphorylation
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sites, only S288 in humans was changed to T228 in other tetrapods and fishes, and Y404 in human was
changed to F404 in amphibians. Generally, TPH1 contains two aromatic amino acid monoxygenases,
catalytic and oligomerization (AAMCO) domains, and the secondary structures of TPH1 consist of 14
α-helices and six β-strands (see Figure 4c). Alignment and secondary structures of TPH1 in additional
teleost species are shown in Figure S2.

3.5. Predicted Three-Dimensional (3D) Structures of the TPH Proteins

In comparing the three-dimensional (3D) structure of TPH1 between zebrafish and chickens,
we observed that both shared the same conformation of the structural elements (α-helices and
β-strands), while some slight structural modifications were present in the loops (Figure 5a,c). The 3D
structures of TPH1a and TPH1b in zebrafish were also strikingly similar, except for minor differences
in the loop regions (Figure 5a,b).
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Figure 5. Predicted 3D structures of representative TPH proteins. Comparisons of the 3D structures
of zebrafish TPH1a (a), zebrafish TPH1b (b), chicken TPH1 (c), zebrafish TPH2 (d), BP TPH2 (e),
and chicken TPH2 (f) are illuminated in Section 3.5. Helices of the catalytic domains and β-strands are
colored sky blue and red, respectively. Loop regions are marked in purple.

Similarly, we compared the 3D structures of TPH2 among zebrafish, amphibious mudskippers
(BP), and chickens. The structural elements of α-helices and β-strands also shared the same
conformation, except for some slight variation in the loops (Figure 5d–f).

It seems that the loop regions in these TPH proteins were relatively flexible. However, the 3D
structures of TPH1 and TPH2 showed obvious differences, and the divergences were located not only
in the structural elements of α-helices and β-strands but also in the loops (see Figure 5), which was
consistent with the functional differences between tph1 and tph2.
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3.6. Detection of Putative Positively Selected Sites in the TPH Family

Researchers had reported that tph1 from peripheral tissues and tph2 from the brainstem
demonstrated biochemical and functional differences [13,41]. In our present study, we also verified that
TPH1 and TPH2 had structural differences based on our aforementioned prediction of 3D structures.
However, positive selection has been identified as an important driving force in protein evolution
of both structure and function based on phylogenetic analyses [43]. We therefore characterized the
selection pressures of different members in the TPH family.

A phylogenetic tree for selection pressure analysis was constructed based on a subset of five TPH1
and five TPH2 protein sequences that were selected from those shown in Figure S1 to represent the five
major groups of vertebrates (Figure 6). We employed a one-ratio or two-ratio branch model in PAML to
check for significant differences in selection pressure between the clades of TPH1 and TPH2 (Figure 6).
The log-likelihood values under one-ratio and two-ratio models were ln L = −8188.872713 and
ln L = −8182.688839, respectively. Our likelihood ratio tests suggested rejection of the one-ratio model
(p < 0.001); the branch model test suggested that selection pressure significantly differed between the
clades of TPH1 and TPH2. We therefore concluded that selection pressure varied between the clades
of TPH1 and TPH2.
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Figure 6. The Bayesian inference (BI) tree based on five TPH1 and TPH2 proteins selected from
those shown in Figure S1 to represent the five major groups of vertebrates for selection pressure
analysis. #1 denotes the foreground of the TPH2 clade. Numbers in the topology indicate the Bayesian
posterior probabilities. The diamonds at the tips of each branch are colored based on the branch length,
with a darker color representing a shorter evolutionary branch.

The mean ω (dN/dS) values for the TPH1 and TPH2 clades were 0.047 and 4.592, respectively,
indicating that the TPH2 clade may have experienced positive selection. Furthermore, we estimated
that some codons had undergone positive selection. Based on Empirical Bayes analysis, we further
identified five positively selected candidate sites (D159, S285, I358, H426, and K441; see Figure 7),
and the posterior probabilities of these sites were greater than 0.99. The positively selected site D159
was near to the pentapeptide (Val–Pro–Trp–Phe–Pro) catalytic active domain, while other positive sites
were next to the phosphorylation site region or α-helix and loops of the TPH family (see Figure 7).
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We also added ten additional vertebrate sequences, with five belonging to TPH1 and five
belonging to TPH2 (see Figure S3) to form a more comprehensive dataset to confirm the analysis
of positive selection. The results also supported the hypothesis that the branch of TPH2 possibly
experienced positive selection in comparison to TPH1 (the log-likelihood values under one-ratio and
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two-ratio models were ln L = −11719.144671 and ln L = −11713.763977, respectively, and the p-value
from the χ2 test was less than 0.001). We performed the analysis again under branch site models and
determined that the list of inferred positively selected sites was the same as in the previous version.

4. Discussion

4.1. Possible Reasons for Variation of tph Copy Number in Vertebrates

Whole genome duplication has been proposed to provide additional genetic material for the
appearance of new genes, allowing organisms to acquire novel phenotypes to survive natural
challenges [44]. In vertebrates, two rounds of WGD occurred in their common ancestor [45,46].
Specifically, the first round happened before the split between Gnathostomes and Agnatha
(jawless vertebrates), and the second round occurred before the split between Chondrichthyes
and Osteichthyes [47,48]. Furthermore, the teleost lineage had undergone an additional WGD
known as the TSGD approximately 320 Mya [17,18]. Besides the TSGD at the base of the teleost
lineage, recent genome duplication events had occurred within some teleost lineages, including the
salmonid-specific genome duplication 80 Mya [49,50], and the common carp lineage appeared
approximately 8 Mya [51]. In addition to teleosts, some basal ray-finned fish lineages, such as
sturgeons and paddlefishes in Acipenserifomes, also had experienced tetraploidization events around
184 Mya [52].

According to our results, most tetrapods examined in this study and some basal non-teleost
ray-finned fishes (e.g., the spotted gar) had single copies of tph1 and tph2, with the exception of
Xenopus laevis, which had two copies of both tph1 and tph2. It has been reported that X. laevis had
undergone recent tetraploidization approximately 40 Mya [53], and thus the doubled copies of tph1
and tph2 were generated in this frog species. This WGD event in X. laevis might have been propitious
for adapting to various environmental factors such as salt, drought, cold, and disease compared to the
closely-related diploid species such as X. tropicalis. Spotted gar diverged from the teleost lineage before
the TSGD and thus was not affected by the TSGD event. Furthermore, Acipenserifomes experienced
their own lineage-specific polyploidization event; thus we detected two copies of tph1 and tph2 in the
American paddlefish and eight copies of tph1 and five copies of tph2 in the Chinese sturgeon.

Researchers had reported that zebrafish, medaka, and sticklebacks had three tph isotypes
named tph1a, tph1b, and tph2 [16,20]. Interestingly, based on a comparative genome-wide survey,
we found that most teleosts with the TSGD had three tph isotypes, except for Asian arowana, fugu,
Northern pike, and tongue sole, which had lost the tph1b gene. For the common teleosts, all three
tph isotypes were present in single copies. However, tetraploid fishes such as the golden-line fishes
(Sa, Sr, and Sg) had five copies (not the expected six) of the three tph isotypes, including three
copies of tph1 and two copies of tph2 (with the possible loss of one tph1a). Other typical tetraploid
teleosts such as the rainbow trout and Atlantic salmon, which had undergone the salmonid-specific
genome duplication, had four copies of tph genes, but copies of duplicated tph1a and tph2 were not
found. The most frequent fate of duplicated genes after WGD is nonfunctionalization; therefore,
these duplicated genes often experienced gene loss [54]. We propose that the main cause of copy
number variation of tph in vertebrates was a combination of WGD and gene loss, as in the cases
of aaad [55], aanat [56], and asmt [57], which encode the remaining three enzymes for melatonin
biosynthesis (Figure 1). Moreover, incomplete annotation of some genomes may be one of the reasons
for the lack of identification of certain genes in some species. Copy numbers between diploid and
tetraploid species do not always correspond to a 1:2 ration because of selective loss of certain copies.
In fact, this phenomenon seems to be particularly common in teleosts.

Moreover, our synteny analysis revealed that almost all tph1 and tph2 genes were localized
on different scaffolds in the same species, except for fugu, Northern pike, and tongue sole.
Interestingly, we found that the synteny genes were not conserved between tetrapods and
Actinopterygii. Only two genes, saal1 and sergef, near the tph1 gene, were shared in Actinopterygii and
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tetrapods. Furthermore, synteny genes located near tph1a and tph1b in the teleosts were not completely
consistent. Only tbc1d15 was shared by tetrapods and Actinopterygii among genes localized near the
downstream and upstream areas of tph2. It seems that the tph gene family experienced rearrangement
during the evolution from teleosts to tetrapods. Meanwhile, we also observed that the synteny of
tph in tetrapods was generally greater than that of teleosts. This phenomenon may be due to the fact
that teleost lineages are more prone to interchromosomal rearrangements than tetrapods, resulting in
shorter conserved syntenic blocks in teleosts compared with tetrapods [58,59]. However, the TSGD
events had also led to shorter syntenic blocks through differential gene loss without rearrangements.
Differential loss of blocks of duplicated genes can cause synteny disruption, contributing to shorter
syntenic blocks in teleosts than in non-teleost vertebrates [54]. The disrupted syntenic blocks are very
common in teleost genomes. For example, Ravi et al. (2013) reported that the syntenic block of the Pax6
locus contained six genes, and this block was completely conserved in tetrapods. However, in zebrafish,
Pax6 was duplicated to pax6a and pax6b, owing to the TSGD, and the blocks of pax6a and pax6b retained
three and four genes, respectively [60].

4.2. Adaptive Evolution of TPHs in Vertebrates and Impact on Human Health

Elucidating the mechanisms of protein functional diversity and understanding how enzyme
families evolve are core issues in evolutionary biology. Catalytic activity toward various substrates and
substrate specificity are the key functional properties of an enzymatic protein. Enzyme families with
divergent functions usually acquire specific activities relating to structural and functional variations
caused by amino acid substitutions during evolution [61]. Numerous phylogenetic analyses based
on amino acid substitutions have suggested that many enzymatic protein families have undergone
positive selection [24,62], which has been considered as an important driving force in protein evolution.

The TPH family has tissue-specific expression patterns: tph1 is distributed in the pineal gland and
peripheral tissues (gut, spleen, and thymus), while tph2 is predominantly expressed in the central tissue
of the brainstem [15]. Thus, there are two serotonin systems in vertebrates independently regulating
distinct functions (Figure 1). However, the lack of comprehensive structural and functional analyses
has generally hindered attempts to elaborate this pattern. Structural and functional characteristics of
proteins are defined into rigid and flexible regions. Rigidity plays an important role in the integrity
of protein folding, while flexibility is important for binding and catalyzing different substrates [63].
In the present study, we compared the 3D structures of TPHs in representative species of vertebrates.
The 3D structures of TPH1 and TPH2 indicated that the structural elements of α-helices and β-strands
generally shared the same conformation, but some slight structural modifications were present in
the loops. However, when we compared the 3D structures of TPH1 and TPH2, we observed obvious
differences. The divergence was not only in the loops but also in the structural elements of α-helices
and β-strands. These divergences are consistent with the differences in function between tph1 and tph2.

Positive selection acts as an important driving force in protein evolution in both structure and
function. Estimating the ratio of dN to that of dS between homologous protein coding genes is
a significant indictor of positive selection at the molecular level. Ratios of dN/dS (ω) in lineages
that have experienced selection may be different from those of other lineages. Previous studies
reported evolutionary divergence from both structural and functional views in the TPH family [8,21].
Thus, we further analyzed the selective aspects of the functional and structural divergence of the TPH
family and attempted to elucidate patterns of positively selected sites. We detected five positively
selected sites in TPH2. Conventional theory emphasizes that replacements in active sites of amino
acids will lead to changes in a protein’s function. TPH1 and TPH2 have a conserved pentapeptide
(Val–Pro–Trp–Phe–Pro) catalytic active domain in humans (see Section 2.4). The five positively selected
sites detected in our present study, however, were not in the catalytic domain. As we reported,
the positively selected site of D159 was near the pentapeptide catalytic domain, while other positively
selected sites were near the phosphorylation sites or the structural elements (α-helix and loops) of
TPHs. Our present study suggests that mutations outside the active regions may have effects on the
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proteins, despite that mutations close to the active sites were apparently more effective than those
more distant. This phenomenon resembles the pine glutathione S-transferase (GST) enzyme family
investigated by Lan et al. (2013), in which three of the five positively selected sites detected in their
study were located in the nonactive sites [43]. Similarly, positively selected sites were also detected
outside the active region of the JGW family in Drosophila, and this generated a new dehydrogenase
with varied substrate specificity compared to the ancestral protein [64]. The positive selection acting
on residues adjacent to the active sites, rather than direct action on the active sites, may be a general
mechanism for the functional diversification of the enzyme families [43,64]. Meanwhile, protein loop
regions and α-helix regions are relatively flexible compared with β-strands. In our present study,
all five positively selected sites in the TPH family were in the loops and α-helix, suggesting that the
TPH proteins could tolerate structural modification. In summary, the positively selected sites detected
in the TPH family may affect TPH activity and substrate specificity.

In addition, recent advances have implicated serotonin as a regulator of inflammation [65],
proliferation [66], regeneration [67], and repair [68]. Interestingly, a recent population-based study
showed that a high intake of selective serotonin reuptake inhibitors was correlated with a reduced
incidence of colorectal cancer, suggesting a biological role of serotonin in colorectal cancer growth
in vivo [69]. Furthermore, the role of serotonin in tumor biology in vivo has been elucidated
using a genetic model of serotonin deficiency (tph1-/-) in mice, and researchers concluded that
serotonin regulated angiogenesis in colorectal cancer allografts by influencing matrix metalloproteinase
12 expression in tumor-infiltrating macrophages, thereby affecting the production of circulating
angiostatin [70]. Therefore, serotonin-related pathways may represent a new therapeutic target
for cancer treatment. Our current study provides basic information necessary for further study of
serotonin’s role in human health.

5. Conclusions

Our present study is the first comprehensive report concerning tph evolution in vertebrates.
We investigated many features of the tph family to provide novel insights into the evolution of
tph genes from a genomic view. Through genome-wide alignment, we found that tetrapods and
non-teleosts had two tph isotypes (tph1 and tph2); however, in the teleost lineage, tph1 had further
diverged into tph1a and tph1b. Therefore, most of the teleosts that had undergone the TSGD event
had three tph isotypes: tph1a, tph1b, and tph2. Copy numbers between diploid and tetraploid species
did not always correspond to a 1:2 ratio, and we estimated that the WGD and gene loss generated
the corresponding variation in tph gene numbers in vertebrates. Several important sites of TPH
proteins were analyzed for structural comparison, and differences of TPHs in vertebrates were mainly
focused at the NH2-terminal. Tertiary structures of TPH1 and TPH2 showed obvious differences in the
structural elements (α-helix and β-strands) and loops. Five positively selected sites were characterized
in the TPH family, and these sites may significantly affect the enzyme activity and substrate specificity.
This result was consistent with tissue-specific transcription patterns of tph1 and tph2 and differential
roles in the serotonin systems of vertebrates. In summary, through these analyses and comparisons,
we provided novel insights into the molecular evolution of the TPH family in vertebrates.
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RAB21, Member RAS Oncogene Family; saal1, Serum Amyloid A Like 1; sergef, Secretion Regulating Guanine
Nucleotide Exchange Factor; swap70b, Switching B Cell Complex Subunit SWAP70; tbc1d15, TBC1 Domain Family
Member 15; tmem19, Transmembrane Protein 19; trhr2, Thyrotropin Releasing Hormone Receptor 2; TSGD,
teleost-specific genome duplication; tspan8, Tetraspanin 8; ucmab, Upper Zone of Growth Plate and Cartilage
Matrix Associated B; ush1c, USH1 Protein Network Component Harmonin; WGD, whole genome duplication;
zfc3h1, Zinc Finger C3H1-Type Containing; znf143b, Zinc Finger Protein 143b; znf536, Zinc Finger Protein 536.
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