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Many crops are colonized with arbuscular mycorrhizal fungi (AMF), which can efficiently

absorb nutrients such as phosphate from the soil. The utilization of mycorrhizal

symbioses is one of the most promising options for developing resource-saving and

sustainable agricultural systems. Most laboratory studies have illustrated the roles of AM

symbiosis by inoculating plants with limited AMF isolates. In the field, however, the roots

of crops are co-colonized with multiple AMF species, which are difficult to separate and

identify and may have different abilities regarding phosphate uptake. In addition, it is

difficult to understand which AMF are functional due to the dynamics of AMF colonization

processes and the largely unknown genomic structure. This review summarizes key

discoveries supporting the importance of the dynamics of AM colonization and genomic

structure, which potentially influence the characteristics of AM phosphate uptake.

Moreover, this review aims to identify the research direction necessary to obtain a better

understanding of the phosphate uptake systems of crops in the field.

Keywords: arbuscular mycorrhizal fungi (AMF), colonization dynamics, indigenous AMF, infection unit, phosphate

uptake

INTRODUCTION

To grow large amounts of crop biomass agricultural fields need to be fertilized because otherwise
soils inevitably will become depleted of nutrients. However, excessive use of chemical fertilizer
induces environmental pollution and promotes the depletion of natural resources (Fan et al., 2011).
The nutrient uptake system of crops includes not only their unique transport system on the root
epidermis but also a transport system mediated by specific soil microorganisms. However, the
nutrient cycling arising in plant-microbial interaction is highly dynamic and complex associated
with soil types, environmental changes, crop species, and cultivation management (Jacoby et al.,
2017). Accordingly, a better understanding of the nutrient uptake system of crops in the field could
help establish a resource saving and sustainable agricultural system.

Regarding the mobility of the inorganic nutrients that are essential for plants, that of phosphate
in the soil is generally low and its absorption leads to the formation of depletion zones around
the roots and rapidly limits its further uptake (Schachtman et al., 1998). Therefore, plants
often suffer from phosphorus deficiency (Vance, 2001). To overcome this problem, plants have
developed a wide array of phosphate uptake strategies, including biotic interactions with diverse
soil microorganisms (Sharma et al., 2013). Among these interactions, symbiosis with arbuscular
mycorrhizal fungi (AMF) in the roots is an ancient and ubiquitous relationship that began over
400 million years ago (Remy et al., 1994; Fonseca and Berbara, 2008). This symbiosis is observed
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in many economically important crops such as soybean, wheat,
and corn. AMF hyphae growing outside roots allow plants to
access phosphate further away from the root surface (Smith et al.,
2011).

There are numerous AMF propagules in soil (e.g., spores,
hyphae, and root remnants), and crop roots are commonly
mycorrhizal (Sanders et al., 1996). As there are few soils with
a complete absence of AMF in nature, the importance of
mycorrhizal functioning (e.g., phosphate uptake) in crops is
hardly noticeable (i.e., there is no mock control). Even if the
plants are inoculated with AMF in the field, indigenous AMF
in the soil are highly adapted to the local biotic and abiotic
conditions and resistant to competition from novel AMF species
(Hart et al., 2017). In fact, few studies have demonstrated
the effectiveness of AMF inoculation under field conditions
(Rodriguez and Sanders, 2015). Accordingly, to evaluate the
ability of phosphate uptake by mycorrhizas, laboratory-scale pot-
culture experiments involving the inoculation of a plant with
one or more AMF isolates under AMF-free soil conditions have
been conducted (Tawaraya, 2003; Deguchi et al., 2012). These
studies clearly established that AMF mediate the phosphate
uptake of plants and, in many cases, improve the nutrition and
the productivity (Bucher, 2007).

Pot experiments with different AMF inoculations have shown
that the level of plant phosphorus are different; thus the ability
of mycorrhizal phosphate uptake may differ among AMF species
(Smith and Smith, 2011; Walder and van der Heijden, 2015).
At the same time, it has been established that mycorrhization is
strongly suppressed under a high concentration of phosphate in
soil (Baylis, 1967; Mosse, 1973), but the degree of this may differ
among AMF and plant species (Johnson, 1993; Van Geel et al.,
2016). Observations of mycorrhization processes at the cellular
level revealed that AMF intracellular colonization was essentially
transient, basically not synchronized among colonized cells, but
roots stably interact with AMF (Gutjahr and Parniske, 2017),
suggesting the dynamic nature of mycorrhization processes (i.e.,
physiologically/functionally active and inactive colonization can
co-exist in the roots). It has been recently reported that the hyphal
structure of AMF and fine root endophytes (Glomus tenue) in
the roots rapidly changes over the course of a growing season
associated with plant phenology and seasonal changes in the
environment (Bueno de Mesquita et al., 2018). Accordingly, it is
expected that the ability and stability of mycorrhizal phosphate
uptake of crops under field conditions will change depending
on several biotic and abiotic factors, although many of which
are not experimentally validated. To utilize AM symbiosis to
improve crop phosphorus nutrition, it is important to increase
our basic knowledge of the colonization dynamics and the growth
conditions under which the mycorrhizas express phosphate
uptake activity associated with their symbiotic behavior.

This article reviews recent findings about phosphate uptake
during mycorrhizal symbiosis from the perspective of AMF’s
highly dynamic colonization processes at the cellular level and
the coexistence of genetically different AMF. Accordingly, this
review attempts to bridge the gap between laboratory-level and
field-level knowledge of the phosphate uptake mechanisms of
mycorrhizal roots.

CHALLENGES: DYNAMICS IN
MYCORRHIZAL PHOSPHATE UPTAKE

Mycorrhizal Phosphate Uptake Pathway
A specific morphological feature of AM symbiosis is the
penetration of AMF into root cortical cells and the development
of a highly branched hyphal structure called an arbuscule
(Bonfante-Fasolo, 1984). Although AMF colonize inside root
cells, they are not completely taken up as plant organelles because
they are surrounded by periarbuscular membranes connected to
the plasma membrane of plant cells (Harrison and Ivanov, 2017),
indicating that AMF are localized outside the cells. As arbuscules
are formed, the expression of host phosphate transporter genes is
induced, which promotes phosphate uptake from the arbuscules
(Pumplin et al., 2012). The expressed protein is specifically
localized on the periarbuscular membrane (Harrison et al.,
2002; Figure 1). In mutant plants carrying a deficient allele
of these symbiotic phosphate transporter genes, an abnormally
early degradation of the arbuscules along with reduction in the
total phosphate uptake is observed (Javot et al., 2007; Yang
et al., 2012; Willmann et al., 2013). This suggests a pivotal
role of the phosphate transport system in the establishment of
mycorrhizal roots. Besides the upregulation of the expression
of symbiotic phosphate transporter genes and establishment of
the “mycorrhizal pathway” of the phosphate uptake system in
mycorrhizal plants, the expression of some phosphate transporter
genes that are probably involved in the epidermal “direct
pathway” of phosphate uptake is downregulated (Grunwald
et al., 2009; Tamura et al., 2012; Yang et al., 2012). Accordingly,
phosphate uptake can be dominated by the mycorrhizal pathway
(Smith and Smith, 2011). Thus, the contribution of the direct
pathway and the mycorrhizal pathway is not simply additive.
More efforts are needed to investigate the mechanism that
balances the contribution of these two pathways (Sawers et al.,
2010; Smith and Smith, 2011; Chu et al., 2013; Facelli et al., 2014).

Benefits of AM symbiosis may not be provided without
carbon cost (Sawers et al., 2017). The host plants must supply
carbohydrates and lipids to AMF to support their growth
(Rich et al., 2017; Roth and Paszkowski, 2017; Keymer and
Gutjahr, 2018; Lanfranco et al., 2018), thereby maintaining
a balance with the cost for the other metabolism. Recent
studies have shown that the balance is influenced by plant
genetic factors. A panel of 30 maize varieties was inoculated
with Rhizophagus irregularis, a commonly used model AMF
(Sawers et al., 2017). The levels of mycorrhizal phosphate
uptake, plant and AMF biomass, and the accumulation of
maize phosphate transporter gene transcripts varied among the
maize varieties. An increase in biomass caused by mycorrhizal
symbiosis is positively correlated with the level of mycorrhizal
phosphate uptake and the amount of extraradical hyphae
at least in the maize and R. irregularis interaction (Sawers
et al., 2017). Additionally, the ionome of the same 30 maize
varieties used in Sawers et al. (2017) revealed variety-specific
responses to the colonization of Funneliformis mosseae in the
concentration of some metal elements (Ramírez-Flores et al.,
2017). These data clearly indicate that host genetic factors
influence fungal growth strategy and have a great impact on
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FIGURE 1 | Lifecycle of intraradical colonization and the expression of

phosphate transporter in arbuscular mycorrhizal symbiosis. A colonized region

derived from one AMF hypha is called “infection unit.” Hyphae penetrate root

epidermis and extends into the intercellular space (Arum-type) or intracellularly

(Paris-type; not shown) in cortical cells. In these processes, arbuscules that

are involved in nutrient exchange are formed in cortical cells in order from the

initial penetration site (hyphopodium). Therefore, the arbuscules that are

closest to the penetration site are the oldest, and the arbuscule close to the tip

of the growing hyphae is the newest. Since the arbuscules have short lifespan

(1–2 days), they collapse in order from the oldest one. Arbuscules are

surrounded by plant membrane (periarbuscular membrane). Plant phosphate

transporter proteins are localized on this membrane and are responsible for

the uptake of phosphate from the arbuscules. In the senescent colonization

stages of infection unit, vesicles and intercellular hyphae are often observed.

The role of these intraradical AMF structures is still unclear.

plant mycorrhiza-mediated mineral nutrition (Sawers et al.,
2017).

A shift from the wild to cultivated species (domestication)
may have decreased the ability of plants to positively respond
to AMF (Lehmann et al., 2012; Sawers et al., 2018). Intensive
breeding for high-input farming systems (i.e., intensive chemical
fertilization) may have reduced the capacity of crops to gain
maximum benefits from AM symbiosis. A recent study has
investigated the response of 27 crop varieties compared with
that of their wild progenitors to AM symbiosis (Martín-Robles
et al., 2018). Among these varieties, the comparison of a subset
of 14 pairs of wild and domesticated species revealed that
the growth response of domesticated species to AM symbiosis
was significantly reduced at high inorganic phosphate levels
in the domesticated counterparts compared with that in their
wild progenitors (Martín-Robles et al., 2018). This indicates the
possibility that AM-independent nutrition and growth system of
domesticated plants are related to high phosphate fertilization
(Lanfranco et al., 2018).

High phosphate conditions significantly decrease the level
of AMF colonization (Nagy et al., 2009; Balzergue et al., 2010;
Breuillin et al., 2010). A recent study has shown that the supply
of exogenous phosphate leads to a rapid (<5 h) suppression
in arbuscule development and temporarily inhibits the growth
of intraradical colonization (Kobae et al., 2016). Although
transcriptomic analyses have failed to find any clear defense
response of petunia plants during phosphate inhibition (Breuillin
et al., 2010), recent QTL analyses using 94 bread wheat genotypes
for root length colonization by a mixed inoculum of three
AMF species have revealed at least two genetic loci related to
defense and cell wall metabolism (Lehnert et al., 2017). It is
hypothesized that defense mechanisms participate in limiting
AMF colonization in plants cultivated in phosphorus-sufficient
condition (Lehnert et al., 2017). One can speculate that a
resistance mechanism to fungi has been selected in domesticated
plants under high-input agriculture that led to a decrease
of the activity or the contribution of mycorrhizal phosphate
uptake pathway. However, based on the detected QTL, it is still
unclear whether these genetic loci are functionally associated
with mycorrhizal phosphate uptake (Lehnert et al., 2017). In the
future, QTL mapping and further functional analyses such as
RNAseq are needed to obtain more detailed information about
the AM colonization of domesticated plants.

These recent studies have shown that crop varieties are one
of the important biotic factors affecting the outcome of the
inoculation of certain AMF strains. This suggests a difficulty of
the utilization of AMF in agriculture, where crop varieties to
be grown is determined depending on the local environment
and economy and the AMF type in the soil is unclear. This
does not mean that AMF function can be neglected. Most of the
domesticated AMF-host crop species are inevitably colonized by
native AMF community, where the effects of each colonization
can be positive, neutral and negative (Johnson et al., 1997;
Jones and Smith, 2004). The direct and mycorrhizal phosphate-
uptake pathway may be inadequately balanced in wheat and
barley, leading to negative mycorrhizal responses (Smith and
Smith, 2011). This is explained as due to a reduced direct
phosphate uptake by colonization of AMF; however, mycorrhizal
phosphate uptake inadequately compensates for direct phosphate
uptake, although further analysis is needed. As mentioned
previously, mutation of mycorrhizal phosphate transporter in
the plant causes an inhibitory effect on AMF colonization
(Javot et al., 2007; Yang et al., 2012; Willmann et al., 2013). A
possible explanation for these observations is that the plant can
assess the costs and the benefits (e.g., the favorable balance of
phosphate-carbon exchange) in the interaction, and inhibits AM
colonization if the balance is unfavorable (Nouri et al., 2014).
Further analysis is needed whether such a balancing mechanism
is conserved in domesticated plants.

High-input agriculture may have influenced not only plant
traits but also AMF traits. For example, frequent soil disturbance
(e.g., tillage) may act as a selection pressure for rapidly colonizing
fungi, causing them to efficiently regenerate hyphal networks
after disturbance and produce abundant spores (Niwa et al.,
2018). These AMF traits possibly influence field crop nutrition.
In future, it will be important to determine whether an adequate
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balance exists between the direct and mycorrhizal phosphate-
uptake pathway in field crops. For this, mycorrhizal phosphate
uptake-defective mutant and wild-type plant pairs will be used
to investigate the molecular mechanisms underlying the balance
of direct/mycorrhizal phosphate uptake using radiolabeled
phosphate (e.g., 32P; Jakobsen et al., 2001; Smith et al., 2004; Yang
et al., 2012; Willmann et al., 2013) as a tracer using the soil of
conventional agriculture (Rillig et al., 2008; Watts-Williams SJ
Cavagnaro, 2015). The balance of mycorrhizal/direct phosphate
uptake associated with indigenous AMF species also remains to
be investigated.

A Mosaic of AMF Is Responsible for
Phosphate Uptake
Inoculation of AMF can have a significant effect on plant
phosphate uptake; however, there are many cases in which
the phosphate uptake in inoculated plants does not increase
compared with that of uninoculated plants (Tawaraya, 2003;
Smith and Read, 2008). One reason for this is the potentially
different level of mycorrhizal phosphate uptake among the types
of AMF (Munkvold et al., 2004). Supporting this, the inoculation
ofMedicago sativawithmore than 30AMF types revealed that the
performance of phosphate uptake differs markedly among AMF
types (Mensah et al., 2015). In the field, roots are generally co-
colonized with multiple AMF types (Kivlin et al., 2011). Strict
host specificity, as found in plant–pathogenic fungi interaction,
has not been recognized for the colonization of AMF except
in mycoheterotrophic species (Redecker et al., 2003; Smith and
Read, 2008). Accordingly, multiple AMF can co-colonize, overlap
of individual AMF colonization in the roots and multiple AMF
species have been detected in only a 1-cm-long root fragment
(van Tuinen et al., 1998). Therefore, the ability of mycorrhizal
roots to perform phosphate uptake in the field is assumed to be
a mosaic of the different abilities of diverse AMF (Jansa et al.,
2008); alternatively, only a portion of the AMF colonizing roots
may temporarily contribute to phosphate uptake in response to
specific environmental conditions (Compant et al., 2010).

As mycorrhizal phosphate uptake under the field condition
may be achieved by the contribution of diverse AMF species
colonizing the roots, it is crucially important to delimit species
of AMF to obtain biological information about the mycorrhizas.
To determine the biological type, the species of AMF should
be generalized and described with “common language” (Öpik
and Davison, 2016) to delimit and identify the AMF species
among different studies. Unless AMF species in different fields
are successfully delimited and classified with universal criteria,
determining their phenotypes (e.g., phosphate uptake ability) in
roots in a specific field will not be meaningful (Rosendahl, 2008).

Unfortunately, the morphology of intraradical mycelia is
hardly distinguishable among the different AMF types, and
different AMF physically overlap in the roots (Smith and Read,
2008); accordingly, the morphological identification of AMF
species in mycorrhizal roots in the field is impossible. However,
the advent of high-throughput sequencing methodologies has
made it possible to characterize the co-colonization of genetically
diverse AMF in roots in the field (Öpik et al., 2009). A total of

288 AMF species have been described (mostly delimited by their
spore morphology), ∼60% of which have undergone sequencing
of their nuclear ribosomal markers: small subunit (SSU) rRNA
gene, ITS region, and large subunit (LSU) rRNA gene (Öpik and
Davison, 2016). However, information about AMF assemblages
obtained from DNA-based approaches can vary depending on
the sample type, marker properties, sequencing approach, and
choices made during bioinformatic analyses (Öpik et al., 2013;
Hart et al., 2015; Varela-Cervero et al., 2015). The taxonomic
resolution with at least SSU sequences, used in a well-maintained
reference database for AMF (Öpik and Davison, 2016), is thought
to be similar (i.e., at least at the genera level but not at the species
or finer clade) to that of morphological delimitation (Davison
et al., 2015). Importantly, however, the longer-read-length PacBio
sequencing of the R. irregularis genome suggested the presence
of intra-isolate variation in the rRNA genes (Maeda et al., 2018).
Whether this variation is commonly observed in AMF and its
biological effects are unclear; however, the finding suggests the
need to re-evaluate the resolution power of commonly used
DNA-based delimitation of AMF species. More importantly,
most AMF in roots are thought to be unculturable or have not yet
been cultured (Ohsowski et al., 2014). Fine endophyte, previously
known as Glomus tenue, has been difficult to culture for a long
time (Walker et al., 2018) but was proven not to be Glomus
but was instead reclassified as Mucoromycotina (Orchard et al.,
2017). Owing to the lack of reference nucleotide sequences
of most AMF colonizing field roots and the current technical
limitation in the robust delimitation of AMF species, we may
have overlooked endemic cryptic AMF species in roots in the field
(Rosendahl, 2008). The difficulties associated with defining AMF
species have been reviewed in several review articles (Hibbett
et al., 2016; Öpik and Davison, 2016; Sanders and Rodriguez,
2016; Selosse et al., 2016) and have recently been discussed in a
workshop at the International Conference on Mycorrhiza (Bruns
et al., 2017).

The Nucleotide Sequence Does Not
Necessarily Reflect the Functionality
Despite the difficulty in the taxonomic characterization of
AMF, high-throughput sequencing techniques can provide a
comprehensive information of AMF genes in the roots. As
information about the existence of AMF in roots accrues,
questions related to the functional properties of individual
AMF are receiving increasing attention (Lekberg and Koide,
2014; Öpik and Davison, 2016). A recently established approach
designed for single-cell genomics and transcriptomics enables
more high-throughput simultaneous analysis of many AMF
species to discover the potential of the expression of their specific
functions. Spore-based RNA sequencings were successfully
applied to obtain transcript datasets from several AMF taxa,
including genetically obscure genera such as Paraglomus,
Ambispora, and Diversispora (Beaudet et al., 2018), highlighting
their reproduction process, translation, amino acid metabolism,
or energy production (Beaudet et al., 2018). However, not only
quantitative evaluation of the “existence” of AMF nucleotide
sequences but also evaluation of the hidden “dynamics” of the
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function in the mosaic of AMF might be necessary to accurately
track the functionality of mycorrhizal roots (van der Heijden and
Scheublin, 2007). This is because AMF colonization in roots has
a short life cycle and some AMF may actively colonize while
others may be inactive at a certain time point. Supporting this,
not all intraradical mycelia derived from one hyphal colonization
(infection unit) containing fine-branched arbuscules in roots
grown in field soils are metabolically active (Kobae et al., 2017).
Under specific environmental conditions, certain AMF may be
deeply involved in host phosphate nutrition compared with
others due to differing life cycles and biological characteristics.
Thus, a list of AMF at a single time point can comprise the
colonization of different contribution levels.

Detailed morphological studies of mycorrhization
processes have suggested that arbuscule formation is basically
transient (Gutjahr and Parniske, 2017), at least in the earliest
developmental stages of mycorrhization (Kobae and Fujiwara,
2014). AMF hyphae penetrating root epidermal cells extend
several millimeters in a longitudinal direction inside the root
(Smith and Read, 2008). The extending intercellular hyphae
successively form arbuscules inside cortical cells (Sanders
and Sheikh, 1983). The lifespan of mature arbuscules that are
accompanied by the expression of plant phosphate transporters
is only a few days, which is followed by their immediate collapse
(Kobae and Hata, 2010). Accordingly, the lifespan of active
infection unit is probably within 1 week, at least in rice seedlings
(Kobae and Fujiwara, 2014). It should be noted that some AMF
species tend to produce vesicles in root areas withmany senescent
arbuscules (Kobae et al., 2016). Although the precise biological
roles of vesicles remain unclear (Smith and Read, 2008), the
protoplasm of vesicles contains nuclei, glycogen granules, small
vacuoles, and lipid droplets (Bonfante-Fasolo, 1984). Given
that the number of vesicles often increases in old or dead roots
(Bonfante-Fasolo, 1984), vesicles are thought to be resting organs
(Smith and Read, 2008). Moreover, roots are often colonized
with intercellular hyphae without arbuscules (Figure 1). The role
of intercellular hyphae and their lifespan are unknown (Smith
and Read, 2008). As total phosphate uptake is largely reduced
in plants with mutation of symbiotic phosphate transporter
genes, intracellular colonization (arbuscule formation) most
likely make a major contribution to mycorrhizal phosphate
uptake, at least under laboratory conditions, with model plants
and model AMF interaction. However, the life cycle and the
functionalities of intraradical mycelia of native AMF have not
been characterized.

To date, the cycle of intracellular colonization has rarely been
taken into consideration when assessing the functionality of AMF
via nucleotide information (genome and transcriptome) on the
AMF that colonize roots, which includes both the active state
and the inactive state of colonization. Because the colonization
cycle is basically regulated in a cell-autonomous manner (Bucher
et al., 2014), the functions of the mosaic of AMF in roots may
not be synchronized. High-resolution analysis of the colonization
process of individual AMF as well as their phosphate uptake
ability will be necessary to obtain a better understanding of the
mechanism of phosphate uptake by the mosaic of AMF. To
this end, a new technique that enables tracking the dynamics of

individual AMF colonization should be applied. This possibility
will be mentioned in the last section.

Role of Bacteria in Phosphate Uptake by
AMF
AMF can only utilize soluble inorganic phosphate. The majority
of soil phosphate is present in an insoluble form because of
immobilization and precipitation with other soil minerals and
is, thus, poorly available for the plant. Phosphate solubilizing
bacteria (PSB) are present in most soils and can potentially
improve phosphate availability to the plant by solubilizing
organic and inorganic phosphorus (Chen et al., 2006). Further,
it has been shown in vitro that PSB solubilize phosphate via
phosphatases, by lowering the soil pH and/or by chelating
phosphate from soil minerals, such as iron and aluminum in
acidic soils and calcium in alkaline soils, aided by organic
acids (Rodriguez and Fraga, 1999; Browne et al., 2009). Recent
studies have shown that the interaction of AMF with PSB in
mycorrhizosphere also influences the mycorrhizal phosphate
uptake. Ordoñez et al. (2016) investigated the influence of
inoculation of Pseudomonas spp., which solubilizes tri-calcium
phosphate in vitro, on AMF growth, root colonization, and
plant phosphate uptake and revealed that AMF did not aid
plant phosphate uptake in the presence of insoluble phosphate
(rock phosphate) as the only phosphorus source, whereas
PSB inoculation significantly aided the phosphate uptake.
Interestingly, PSB inoculation strongly affected the growth of
intra- and extra-radical hyphae of AMF (Ordoñez et al., 2016;
Battini et al., 2017). Specifically, PSB enhanced metabolically
active mycorrhizal colonization, measured as percentage root
length colonized by AMF stained for phosphatase activity, even
in unsterilized soil containing a native AMF and microbial
communities (Ordoñez et al., 2016). Importantly, the in vitro
ability of PSB in solubilizing insoluble phosphate was not a
predictor of strains that result in improved phosphate acquisition
by roots (Ordoñez et al., 2016). The strong effect exerted by PSB
on the level of AMF colonization did not translate into obvious
patterns of increased phosphate acquisition by plants, which was
consistent with earlier findings (Smith et al., 2011). It is likely
that AMF and PSB synergistically interact. However, such a biotic
interaction under field conditions may be highly dynamic and
complex (Ordoñez et al., 2016), and may include members of
putative helper/antagonistic bacteria for AMF (Frey-Klett et al.,
2007; Battini et al., 2017; Svenningsen et al., 2018).

One of the difficulties in the accurate detection of the
occurrence of synergistic effects is deciphering the mechanistic
basis of cooperative interaction. PSB involved in the
solubilization of organic phosphates have been detected on
the surface of AMF hyphae (Feng et al., 2002; Zhang et al., 2014).
They thrive in close vicinity of AMF extraradical hyphae and
intimately cooperate with AMF by providing inorganic minerals
(e.g., phosphate) released from organic matter decomposition in
exchange for carbon exuded by the hyphae (Zhang et al., 2016).
Zhang et al. (2018) have reported the mechanism underlying the
cooperative interaction of phosphate–carbon exchanges between
R. irregularis and Rahnella aquatilis at the transcriptional level
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and demonstrated that fructose, glucose, and trehalose were
exuded by the AMF hyphae. The transcript levels of fructose
transporter and phosphatase genes of R. aquatilis increased
1 h after the presence of AMF hyphae. Treatment with 20µM
fructose but not glucose (the approximate concentration
detected in hyphal exudates) induced the expression of R.
aquatilis phosphatase genes, indicating that the uptake of
fructose by R. aquatilis triggered the expression of phosphatase-
encoding genes. They also demonstrated that acid and alkaline
phosphatase activities in the culture medium increased in the
presence of AMF hyphae, which then enhanced the solubilization
of phytate phosphate. Finally, the transcript levels of the AMF
phosphate transporter gene was increased in the presence of
R. aquatilis. Given that bacteria can selectively use substrates
from a mixture of different carbon sources (Görke and Stülke,
2008), the type of carbon exudates from AMF hyphae can change
bacterial communities in the mycorrhizosphere (Zhang et al.,
2018). In future, it will be important to study whether specific
AMF families are associated with similar PSB communities or
whether a change in PSB community can occur even in single
AMF through various developmental stages of the host plant.
In addition, the phosphate uptake, translocation, and export
processes of AMF are important (Ezawa and Saito, 2018).
The first identification of AMF phosphate transporter gene
was reported in 1995 (Harrison and van Buuren, 1995). To
date, several phosphate transporter genes have been isolated
from AMF isolates and demonstrated that many of them
expressed in both extraradical hyphae and intraradical hyphae,
suggesting that they are involved in phosphate uptake from
the soil, phosphate reabsorption from the periarbuscular space
(Benedetto et al., 2005; Balestrini et al., 2007; Fiorilli et al., 2013)
and phosphorus signal transduction (Xie et al., 2016). Molecular
basis of these processes may be elucidated in model AMF using
new genetic manipulation techniques (e.g., host-induced gene
silencing, virus-induced gene silencing, and spray-induced gene
silencing; Helber et al., 2011; Kikuchi et al., 2016; Xie et al.,
2016; Wang and Jin, 2017). It is interesting to study whether
the phosphate transport system of a model AMF is conserved
in colonization of native AMF. A better understanding of
phosphate homeostasis and translocation process of native AMF
will further improve understanding regarding the function of the
AMF–PSB interaction.

Environmental Factors Influence
Colonization Dynamics
Among the environmental factors that influence the colonization
of AMF in roots, the most intensely investigated is the level
of phosphorus in the soil. It is well known that the AMF
colonization level is remarkably decreased by the intense
application of phosphorus fertilizer (Baylis, 1967; Mosse, 1973);
this phenomenon is called “phosphate inhibition” (Graham
et al., 1981). Rice seedlings that express the symbiotic phosphate
transporter GFP (green fluorescent protein) fusion protein were
infected with R. irregularis, treated with phosphate, and the
colonization dynamics was examined by live imaging (Kobae
et al., 2016). Mature arbuscules with fine branches were found

to be resistant to phosphate treatment and their lifespan did
not change compared with that of the control. However, the
development of young arbuscules with insufficient branching
was found to be severely suppressed in a short period,
and the development of infection units was also suppressed.
Eventually, overall mycorrhization temporarily stopped after the
phosphate treatment, but the formation of a new infection
unit began at least 2 days after treatment. Therefore, the
functionality of AMF in roots is dynamically regulated according
to phosphate availability in the soil. Importantly, phosphate
inhibition induces the formation of vesicles of R. irregularis in
rice roots by 1 day after phosphate treatment (Kobae et al., 2016),
suggesting the resting state of intraradical colonization during
phosphate inhibition.Moreover, the arbuscule/vesicle ratio varies
depending on the AMF species even within the same subgenus
Glomus Ab (Kiers et al., 2011); the genera Gigaspora and
Scutellospora do not form intraradical vesicles (Smith and Read,
2008), suggesting the interspecific and intraspecific differences of
resource hoarding strategies such as the morphological changes
in high phosphate condition. Thus, the physiological status of
intraradical colonization for individual AMF types and root cells
along with the state of environmental factors (e.g., phosphate
availability) should be clarified and taken into consideration
when we assess the phosphate uptake of the mycorrhizas based
on the nucleotide data from high-throughput sequencing studies.

PERSPECTIVE: HOW DO WE KNOW
ABOUT DYNAMIC MYCORRHIZAL
PHOSPHATE UPTAKE?

Genetic Variability of AMF
Our current knowledge about mycorrhizal phosphate uptake has
largely been obtained through laboratory studies conducted on
culturable AMF isolates, and we have a limited understanding
of how diverse AMF members cooperatively or competitively
influence phosphate uptake in the field (Burleigh et al., 2002;
Engelmoer et al., 2014; van der Heijden et al., 2017). At present,
high-throughput sequencing studies can produce metagenomic
data for all AMF species in field samples. The drop in sequencing
costs and the advances in informatics offer new opportunities
for the reconstruction of individual microbial genomes (Parks
et al., 2017), which may enable us to understand the genomic
structures (e.g., genetic variations that can exist among nuclei or
rRNA genes) of individual AMF and to more robustly define the
species of AMF.

It is still unclear whether the genome of an individual AMF
is stable. In other words, the definition of the species concept
of AMF is enigmatic (Bruns et al., 2017). Early studies suggested
that the AMF genomic structure is highly heterogeneous; in other
words, their coenocytic mycelia and spores contain a mixture
of thousands of genetically different nuclei, so they might be
heterokaryons (Sanders and Croll, 2010). This is supported by
the observation that, in laboratory in vitro studies, anastomosis
(hyphal fusion) can occur between genetically different AMF
types, suggesting the potential for genetic variability of AMF
(Chagnon, 2014; Novais et al., 2017). However, in the fungal
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genetic system, the somatic incompatibility system usually
triggers programmed cell death because nonself hyphal fusion
is a risky endeavor that can rapidly disrupt cellular homeostasis
(Strom and Bushley, 2016).

Recent advances in the genomic study of model AMF
culture lines have suggested that these lines have a little genetic
heterogeneity and the presence of sex genes (Tisserant et al.,
2013; Lin et al., 2014; Ropars et al., 2016; Tang et al., 2016).
This may lead to the acceptance of concepts of biological species
(De Queiroz, 2005) in AMF as well as in many other organisms
and to prediction of the phenotypic similarity within the same
AMF species. Moreover, finding of the presence of intra-isolate
heterologous rRNA genes may solve the problem of the complex
genomic organization of AMF (Maeda et al., 2018). In addition,
it is observed that isolates of the same AMF species undergo
anastomosis and exchange nuclei (Croll et al., 2009; Sbrana et al.,
2018). Based on the genome sequences of five R. irregularis
isolates, it is also expected that they may undergo karyogamy,
and eventually recombine through meiosis or parasexuality
(Chen et al., 2018; Mathieu et al., 2018). More interestingly,
Burkholderia endobacteria has a role in the reproductive biology
of this host Rhizopus microsporus (Mucoromycotina) (Partida-
Martinez et al., 2007; Torres-Cortés et al., 2015; Mondo et al.,
2017). AMF also have the propensity to host diverse endobacteria
(Bianciotto et al., 2003; Naito et al., 2017), suggesting the
intriguing theoretical scenario that AMF endobactirea influence
the genetic dynamics (Pawlowska et al., 2018). Accordingly,
although many investigation is needed, in contrast to previous
situation where there was little information underlying genetic
heterogeneity, the genetics of model AMF may be easier to
understand than previously thought, and the genetic control and
utilization of the specific functional traits of AMF in the field may
become possible. However, some researchers still suggest that
natural AMF may have genetic heterogeneity (Sanders and Croll,
2010; Bruns et al., 2017). In fact, sister spores generated from the
anastomosis between different AMF isolates were shown to have
different influences on the growth of the host plants (Croll et al.,
2009; Angelard et al., 2010). Study of the genetics of AMF is still in
its infancy. It is thus still unclear whether the situation described
in laboratory-cultured lines can be generalized in AMF including
unknown natural species.

In the field, mycorrhizae of conspecific AMF are thought
to be connected with common mycorrhizal networks (CMNs;
Bücking et al., 2016). A CMN shares cellular constituents
including nucleus, organelles, viruses, and endobacteria in the
same cytoplasm of coenocytic mycelia (Jany and Pawlowska,
2010). If it is true that the genotype and phenotype of AMF
mycelia can change rapidly in response to environmental changes
(e.g., host plant; Angelard et al., 2014), it is reasonable to
think that some portion of CMN terminal branches may change
their genetic and functional traits by encountering different
biotic (host species, microbiome) and abiotic (nutrient status,
cultivation management, soil properties) stimuli during their
colonization process. In this case, CMN may not be genetically
homogeneous and may be heterogeneous over time, suggesting
the potential impact of genetic variation from the perspective of
long-term and field-level cultivation (Vályi et al., 2016). To obtain

a better understanding of AMF genetic variability under field
conditions, continuous observation of the genomic structure of
AMF at a fixed point in soil will be important. Especially, it will
be important to investigate whether and how crop species, crop
rotation, field management, and fertilization affect the genomes
and the functionality of individual AMF.

Colonization Dynamics
Arbuscules are thought to be the parts essential for phosphate
uptake because symbiotic phosphate transporter proteins are
specifically expressed and localized in arbuscule-containing cells
and their mutation causes a reduction of mycorrhizal phosphate
uptake ability (Gutjahr and Parniske, 2017). However, most of
our understanding of the phosphate uptake at arbuscules is
based on recent studies analyzing the associations betweenmodel
plant species and culturable AMF. Because all unculturable
AMF that colonize roots grown under field conditions have not
been experimentally characterized, there is the unsatisfactory
situation that the phosphate uptake of field mycorrhizas can only
be interpreted with the current knowledge of AM symbiosis.
Recent studies on the lifecycle of intracellular colonization and
its dynamic environmental responses (e.g., phosphate inhibition,
vesicle formation) suggest that the colonization dynamics
may affect the phosphate uptake ability of mycorrhizal roots.
However, it is unclear whether such colonization dynamics
observed in model systems is a general phenomenon in AMF in
the field. For example, some AMF extend intercellular hyphae
during the development of an infection unit (Arum type) and
others extend their intraradical hyphae by penetrating root
cortical cells (Paris type; Smith and Read, 2008). The former type
is probably able to rapidly withdraw from plant cells after the
collapse of arbuscule branches Kobae and Hata, 2010, but it is
unknown whether the latter’s intracellular hyphal coil (Dickson
et al., 2007) can withdraw from plant cells. Are there differences
in the strategy of nutrient exchange between these groups? Since
the biology and even the colonization processes of culturable
AMF have yet to be fully characterized, the characteristics of field
AMF, which are not cultured, are completely unknown.

To date, few groups have conducted colonization dynamics-
based functional studies. This is probably because we still
do not have suitable molecular or histological tools to detect
and analyze the lifecycle of colonization. Interestingly, Floss
et al. (2017) recently demonstrated that a transcription factor
of Medicago truncatula, MYB1, is a central regulator of
arbuscule degeneration. MYB1 regulates the expression of a
number of genes encoding digesting hydrolytic enzymes such
as chitinase, lipase, and proteases, which are likely candidate
markers, using it simultaneously with a symbiotic phosphate
transporter, precisely reflecting the lifecycle of colonization. Next,
it will be important to investigate the colonization dynamics of
unculturable AMF colonizing field roots using new molecular
markers or techniques.

As mentioned above, mycorrhizae can be regarded as a
mosaic of diverse AMF individuals in symbiosis with the root.
Because the individual AMF in the roots are the pieces of
the puzzle of the functionality of field mycorrhizae, the need
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to explore the functioning of AMF in situ and at the single-
cell level has been pointed out (Limpens and Geurts, 2014;
Öpik and Davison, 2016; Taylor et al., 2017; van der Heijden
et al., 2017). In particular, genetic and functional analyses of
infection units in roots grown in the field might be a major
frontier for understanding the biology of field AMF and their
functionality. Recently, a new technique for elucidating the rRNA
gene information of metabolically active infection units has been
reported (Kobae et al., 2016). Root segments (<3mm) of rice
containing an active infection unit were dissected and squashed,
large subunit rRNA genes were amplified using fungal universal
primers and the sequences were directly determined by Sanger
sequencing. By combining this method with the latest single-
cell-level, ultra-low input micro-transcriptome analysis (Beaudet
et al., 2018) coupled with the reconstruction of genomes of each
infection unit, we should be able to increase our basic knowledge
of the genetics of AMF, mycorrhization processes by tracing
specific AMF (Schlaeppi et al., 2016), and the expression of
functionality. In this approach, fluorescent marker plants (e.g.,
phosphate transporter-GFP rice; Kobae and Hata, 2010) would
be feasible for efficiently detecting the functional colonization.

On the other hand, AMF functioning may be influenced by
interacting microorganisms (e.g., PSB). These interactions will
be partly characterized by the studies of molecular dialogues
with fungal/bacterial effectors (Sedzielewska Toro, 2016; Kamel
et al., 2017), plant hormones (Sawers et al., 2018), expression of
nutrient transporters and metabolic crosstalk among symbionts
(Lanfranco et al., 2018). As mentioned above, mycorrhizal
phosphate uptake in the field is assumed to be driven by
the mosaic of different AMF. The combined investigation of
colonization dynamics and high-resolution functional cross-talk
among symbionts presents a logical next step for the better

understanding of the mechanism of mycorrhizal phosphate
uptake.

CONCLUSION

In field, the roots of crops are co-colonized with multiple AMF
species, which are difficult to separate and identify. The ability
of mycorrhizal roots to perform phosphate uptake in the field is
assumed to be a mosaic of the different abilities of diverse AMF.
However, the biology of uncultured AMF in the field is hardly
understood. Given advances in high-throughput sequencing
technologies, such complex phosphate uptake systems under field
conditions are the new frontier in mycorrhizal research and are
crucial for managing the phosphate nutrition of crops. To this
end, the understanding of the dynamics of colonization and
the genetics of field AMF coupled with their functionality will
be important. Many economically important crops (e.g., maize,
soybean, wheat, and barley) are commonly mycorrhizal and their
nutrition is influenced by the biology of AMF. Accordingly, a
better understanding of the mineral nutrient uptake systems of
crop mycorrhizas in the field could help establish a resource-
saving and sustainable agricultural system.
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