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Abstract: Zebrafish are used widely in biomedical, toxicological, and developmental research,
but information on their xenobiotic metabolism is limited. Here, we characterized the expression
of 14 xenobiotic cytochrome P450 (CYP) subtypes in whole embryos and larvae of zebrafish (4 to 144 h
post-fertilization (hpf)) and the metabolic activities of several representative human CYP substrates. The 14
CYPs showed various changes in expression patterns during development. Many CYP transcripts abruptly
increased at about 96 hpf, when the hepatic outgrowth progresses; however, the expression of some cyp1s
(1b1, 1c1, 1c2, 1d1) and cyp2r1 peaked at 48 or 72 hpf, before full liver development. Whole-mount in situ
hybridization revealed cyp2y3, 2r1, and 3a65 transcripts in larvae at 55 hpf after exposure to rifampicin,
phenobarbital, or 2,3,7,8-tetrachlorodibenzo-p-dioxin from 30 hpf onward. Marked conversions of
diclofenac to 4′-hydroxydiclofenac and 5-hydroxydiclofenac, and of caffeine to 1,7-dimethylxanthine,
were detected as early as 24 or 50 hpf. The rate of metabolism to 4’-hydroxydiclofenac was more marked
at 48 and 72 hpf than at 120 hpf, after the liver had become almost fully developed. These findings reveal
the expression of various CYPs involved in chemical metabolism in developing zebrafish, even before
full liver development.
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1. Introduction

In recent years, zebrafish (Danio rerio) embryos and larvae have been used as alternative in vivo
toxicity screening models early in the drug discovery process because of their low cost, the need for
only small amounts of test drugs, and their high throughputs [1–4]. Moreover, because in Europe
zebrafish embryos are considered non-protected animals until the stage of independent feeding at
120 h post-fertilization (hpf) based on directive on the protection of animals used for scientific purposes,
their use is in line with the 3Rs (reduce, refine, and replace) approach to animal use for scientific
purposes [5]. Several phenotype-based alternative methods for examining developmental toxicity by
using zebrafish embryos have been reported and have shown high concordance (81% to 90%) with the
findings of in vivo mammalian studies [6–9].

Despite these advances, a problem remains in achieving more accurate predictions of the toxicity
of various drugs to humans and other mammals: We still have insufficient information about the uptake
and metabolism of drugs in zebrafish embryos and larvae. With regard to drug uptake, although most
developmental toxicity evaluations by using the above mentioned phenotype-based methods have
been based on the concentration of each compound in water (Cw), the Cw does not reflect the amount of
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toxicant that is directly associated with developmental toxicity [10]. Only a few papers have reported
the contents of compounds in whole zebrafish embryos or larvae (Ce) [10–13]; further data on the
Ce for various compounds are therefore needed to determine the uptake properties of these drugs
in zebrafish embryos or larvae in detail. With respect to metabolism, zebrafish embryos and larvae
depend on their own drug-metabolizing capacity for detoxification of xenobiotics because of the lack
of a maternal barrier, whereas mammalian embryos and fetuses are exposed to the parent compound
and its metabolites via the maternal metabolism. In particular, the presence or absence of direct
drug-metabolizing capacity is important in studies of proteratogens, which require bioactivation to
exert their teratogenic potential [14]. A lack of intrinsic capacity in zebrafish to metabolize proteratogens
may lead to false negative results in teratogenicity assays of these compounds. Despite these potential
issues, there have been few comparisons of drug metabolism between zebrafish embryos or larvae and
humans or other mammals [12].

Drug metabolism occurs mainly through cytochrome P450 enzymes (CYPs). CYPs are a superfamily
of hemoproteins, among which the CYP1, CYP2, and CYP3 families participate largely in the oxidative
metabolism of xenobiotics [14–16]. CYPs account for approximately 75% of the enzymes involved in
the metabolism of marketed pharmaceuticals [17]. Of the 57 CYPs encoded in the human genome,
a mere five CYP family members (CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5) account for
approximately 95% of the metabolism by CYPs [17]. In the human liver, which is crucial to homeostasis
and the protection of individuals against xenobiotics, the three most commonly expressed CYPs are
CYP1A2, CYP2C9 and CYP3A4/5, the respective contents of which as percentages of total CYP are 12%
to 13%, 12% and 29% to 30% [18–21].

In zebrafish, our knowledge of CYP-mediated drug metabolism is limited and fragmented [2,22].
Previous reports have shown that formation of the hepatic primordium in zebrafish begins at 28 hpf;
hepatic outgrowth begins between 60 and 72 hpf, and liver function, including CYP metabolism,
is almost complete by 120 hpf [23–25]. Transcriptional profiling of a full complement of CYP genes
in the zebrafish embryo during the first 48 h of development and in the adult zebrafish liver has
been reported [26,27]. However, data on the expression of CYP genes in zebrafish from 48 hpf
onwards have not yet been reported. Additionally, data on the activity and organ distribution of CYP
transcripts in zebrafish remain scarce. Because some drugs activate CYP-mediated metabolism by
inducing the biosynthesis of CYP isozymes through particular signaling pathways, metabolic activity in
zebrafish exposed to substrates is likely to be different from that in unexposed zebrafish [28]. Therefore,
to understand completely CYP-mediated drug metabolism in developing zebrafish embryos and larvae
we need to examine the profiles of CYP activity and expression.

Our objective here was to research the profiles of mRNA expression, organ distribution,
and metabolic activity in developing zebrafish embryos and larvae for various drug-metabolizing
CYPs and to obtain additional data on the uptake of drugs. To meet this objective we performed
the following experiments: (1) we used quantitative real-time polymerase chain reaction (qPCR) to
analyze the transcript levels of drug-metabolizing CYPs in whole embryos or larvae in comparison
with those in the adult zebrafish liver; (2) we performed whole-mount in situ hybridization to analyze
the distribution of CYP transcripts in larval zebrafish treated with chemical inducers from before the
start of hepatic outgrowth; (3) we measured the Ce values of some compounds to obtain more data on
their uptake in zebrafish embryos and larvae; and (4) we measured human CYP-mediated metabolites
in zebrafish embryos and larvae exposed to CYP substrates to investigate similarities in metabolic
function between humans and zebrafish embryos or larvae. In experiments (3) and (4), three drugs,
namely caffeine, diclofenac sodium salt (diclofenac), and testosterone, were used for exposure of
zebrafish embryos and larvae. The log Kow (the logarithm of the n-octanol–water partition coefficient)
values for caffeine, diclofenac, and testosterone are −0.07, 1.13 (pH 7.4), and 3.32, respectively [29–31].
For experiment (4), we used caffeine, diclofenac, and testosterone as substrates for three human CYPs
(CYP1A2, CYP2C9, and CYP3A4/5, respectively) that are considered key in human drug metabolism.
In humans, the formation of 1,7-dimethylxanthine is known to be mediated by CYP1A2, and that of
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4′-hydroxydiclofenac (4′-OHDF) is mediated by CYP2C9 [32,33]. The CYP3A4/5 pathway mediates
the formation of 5-hydroxydiclofenac (5-OHDF) and 6β-hydroxytestosterone in humans [34,35].

2. Results

2.1. Expression of Metabolic CYP Isoforms in Whole Zebrafish Embryos and Larvae from 4 to 144 hpf

Fourteen CYPs that are homologous to human xenobiotic metabolic CYP isoforms showed
various changes in their mRNA expression patterns during development (Figures 1–3). Expression of
many CYP transcripts abruptly increased at about 96 hpf, when the hepatic outgrowth progresses;
however, the expression of some cyp1s (1b1, 1c1, 1c2, 1d1) (Figure 1B–E) and cyp2r1 (Figure 2D) peaked
at 48 or 72 hpf, before full liver development (Figures 1 and 2). The transcript levels of many CYPs,
namely cyp1b1, 1c1, 2n13, 3a65, 3c2/3, and 3c4 (Figures A,C,D), in whole embryos or larvae at various
points in the period up until 144 hpf were significantly (p < 0.05) higher than those in male or female
adult livers. Expression levels of cyp1c2 and 1d1 were not always significantly higher in male or female
adult livers than in larvae at some stages (Figure 1D,E). Whole-larval expression of cyp3a65 was much
greater than that of cyp3c1 and other cyp3c subtypes from 96 to 144 hpf, whereas cyp3c1 dominated
over the other cyp3 subtypes in the adult livers (Figure 3).

Figure 1. Developmental expression of five mRNAs of cyp1 isoforms in zebrafish whole embryos
and larvae from 4 to 144 h post-fertilization (hpf) in comparison with their expression in the livers of
adults of both sexes. Results of cyp1a (A), cyp1b1 (B), cyp1c1 (C), cyp1c2 (D) and cyp1d1 (E) are shown.
“a” indicates a significant (p < 0.05) difference compared with male livers and “b” is a significant
(p < 0.05) difference compared with female livers. Black letters indicate significantly lower expression
in embryos or larvae compared with adult livers, and red letters indicate significantly higher expression
in embryos or larvae compared with adult livers. n = 6.
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Figure 2. Developmental expression of five mRNA of cyp2 isoforms in zebrafish whole embryos and
larvae from 4 to 144 h post-fertilization (hpf) in comparison with their expression in the livers of adults
of both sexes. Results of cyp2ad2 (A), cyp2k18 (B), cyp2n13 (C), cyp2r1 (D) and cyp2y3 (E) are shown.
An inset graph was added in embryonic and larval cyp2r1 expressions (D). “a” indicates a significant
(p < 0.05) difference compared with male livers and “b” is a significant (p < 0.05) difference compared
with female livers. Black letters indicate significantly lower expression in embryos or larvae compared
with adult livers, and red letters indicate significantly higher expression in embryos or larvae compared
with adult livers. n = 6.

Figure 3. Developmental expression of four mRNA of cyp3 isoforms in zebrafish whole embryos and
larvae from 4 to 144 h post-fertilization (hpf) in comparison with their expression in the livers of adults
of both sexes. Results of cyp3a65 (A), cyp3c1 (B), cyp3c2/3 (C) and cyp3c4 (D) are shown. “a” indicates a
significant (p < 0.05) difference compared with male livers and “b” is a significant (p < 0.05) difference
compared with female livers. Black letters indicate significantly lower expression in embryos or larvae
compared with adult livers, and red letters indicate significantly higher expression in embryos or larvae
compared with adult livers. n = 6.
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2.2. Spatial mRNA Expression of CYP Isoforms in Larvae at 55 hpf

To address the localization of the CYP isoforms studied in the previous section, we performed
whole-mount in situ hybridization in 55 hpf larvae, before the start of hepatic outgrowth. Positive signals
were rarely detected in vehicle-treated larvae (Figure 4E,G,J,N), except in the minor case of cyp2y3
(Figure 4K), supporting the specificity of RNA probes used.

As positive expression of CYP subtypes studied was rarely detected in the vehicle control larvae,
embryos were exposed to CYP inducers (rifampicin, phenobarbital, or 2,3,7,8-tetrachlorodibenzo-
p-dioxin (TCDD)) [28] from 30 hpf onwards and fixed for in situ hybridization at 55 hpf. cyp2N13 mRNA
expression was detected in larvae exposed to rifampicin (Figure 4E,F) or phenobarbital (data not
shown). Localization was comparable to that of elov1a, an air bladder primordium marker (A, B).
Positive signals of cyp2r1 mRNA from a location similar to that of the liver, as revealed by foxa3 mRNA
expression (C, D), were recognized in larvae exposed to TCDD (H), phenobarbital (I), or rifampicin
(data not shown). cyp2y3 mRNA was detectable in larvae exposed to rifampicin (L) or phenobarbital
(M), as well as in a few vehicle-treated control larvae (K). The expression sites of cyp2y3 mRNA
were similar to the locations of the liver and intestine, as revealed by comparison with foxa3 mRNA
expression (C, D). A cyp3a65 mRNA signal appeared in some TCDD- or rifampicin-exposed larvae
(O, P); the expression sites were similar to those of foxa3 (C, D) and cyp2y3 (L, M) mRNAs.

In contrast, in 55 hpf larvae, significant inductions of cyp2n13, 2r1, 2y3, and 3a65 by rifampicin,
and β-naphthoflavone (a TCDD-like CYP inducer [36]) were not recognized by qPCR (Figure S1).

Figure 4. Spatial expression of mRNAs of CYP subtypes. Zebrafish embryos were exposed to 100 µM
rifampicin (Rifam; (F,L,P)), 100 µM phenobarbital (Pheno; (I,M)), or 1.0 ppb TCDD (H,O) and 0.1%
dimethyl sulfoxide (DMSO) as vehicle control (DMSO; (E,G,J,K,N)). (A,B) are published images of
elov1a, a marker of the primordial bladder ((A) at 2 days post-fertilization [dpf], (B) at 3 dpf) [37].
(C,D) are published images of foxa3, a marker of the primordial liver (black arrowheads) and intestine
(black arrows) and bladder (asterisks) ((C) at 2 dpf, (D) at 3 dpf) [38]. Larval zebrafish (55 hpf) were used
for whole-mount in situ hybridization with RNA probes for cyp2n13 (E,F), cyp2r1 (G–I), cyp2y3 (J–M),
and cyp3a65 (N–P). Asterisks indicate possible bladder primordium (F) and white arrowheads and
arrows indicate possible primordia of the liver and intestine, respectively (H–P). Scale bars in (E–P)
indicate 200 µm. (A–D) are reproduced from previous reports ([37] for (A,B), and [38] for (C,D)).
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2.3. Content of Test Compounds in one Whole Zebrafish Embryo or Larva Every 24 hpf

Every 24 hpf we measured the Cw values of the test compounds used to quantify the Ce values
(Table 1). The time-weighted mean measured Cw values were, for caffeine, 10.2 mg/L (102% of
the nominal concentration); for diclofenac, 3.41 mg/L (107% of the nominal concentration); and for
testosterone, 2.80 mg/L (93.3% of the nominal concentration). The measured Cw value of each test
compound was therefore close to the nominal value throughout the study.

Table 1. Measured concentrations of test compounds in test solutions (Cws) used to determine
concentrations in zebrafish embryos or larvae (Ces).

Caffeine Diclofenac Sodium Salt Testosterone

Test Level Time-Weighted Mean of
Measured Concentration Test Level Time-Weighted Mean of

Measured Concentration Test Level Time-Weighted Mean of
Measured Concentration

10 10.2 (102%) 3.2 3.41 (107%) 3.0 2.80 (93.3%)

The Ce of caffeine increased steadily and was still increasing at the end of sampling at 120 hpf
(Figure 5A). The maximum amount of caffeine per one whole embryo or larva during exposure was
4.54 ± 0.10 ng at 120 hpf. The Ce of diclofenac per embryo or larva showed a temporal behavior
different from that of caffeine. It reached a maximum value (1.64 ± 0.15 ng) at 72 hpf, but by 120 hpf had
gradually and significantly (p < 0.05) decreased to 0.285 ± 0.065 ng (Figure 5B). The Ce of testosterone
per embryo or larva had a temporal behavior similar to that of diclofenac. It reached a maximum value
(12.8 ± 1.14 ng) at 48 hpf, but by 120 hpf had gradually decreased to 1.43 ± 0.11 ng (Figure 5C).

Figure 5. Contents of (A) caffeine, (B) diclofenac sodium salt, and (C) testosterone per one whole
embryo/larva during exposure to each test compound. Each plot shows the mean values of three
replicates. Each error bar shows the standard deviation of the replicates. Significant differences between
two specific data points, as determined by a two-tailed t-test, are shown by an asterisk (p < 0.05).
Statistical analyses were performed only for the specific sets of data points shown by the asterisks.
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2.4. Contents of Test Compound Metabolites per Whole Zebrafish Embryo or Larvae

During exposure to caffeine or diclofenac, the respective metabolites 1,7-dimethylxanthine or
4′-OHDF and 5-OHDF were detected and quantified in embryos or larvae both before and after the start
of liver function (Figure 6). The Ce of caffeine per whole embryo or larva was 2.69 ± 0.14 ng at 50 hpf
and 5.15 ± 0.31 ng at 120 hpf (Figure 6A). The Ce of the caffeine metabolite 1,7-dimethylxanthine per
whole embryo or larva was 0.0161 ± 0.0025 ng at 50 hpf and 0.0355 ± 0.0069 ng at 120 hpf (Figure 6B).
The Ce of 4′-OHDF per whole embryo or larva showed a temporal behavior similar to that of diclofenac.
It reached a maximum value (8.90 ± 0.21 ng/larva) at 72 hpf, but by 120 hpf it had gradually and
significantly (p < 0.05) decreased to 1.34 ± 0.52 ng (Figure 6C). The Ce of 5-OHDF per whole embryo
or larva reached a maximum value (2.80 ± 0.31 ng) at 96 hpf, but by 120 hpf it had decreased to
0.601 ± 0.178 ng (Figure 6C). 6β-Hydroxytestosterone was not detected in embryos or larvae at 50 or
120 hpf during exposure to testosterone (data not shown).

Figure 6. Contents of (A) caffeine, (B) 1,7-dimethylxanthine, and (C) diclofenac sodium salt (DF),
4′-hydroxydiclofenac (4′-OHDF), and 5-hydroxydiclofenac (5-OHDF) per one whole embryo or larva
during exposure to each test compound. Each bar shows the mean value of three replicates. Each error
bar shows the standard deviation of the replicates. Significant differences between two specific data
points, as determined by a two-tailed t-test, are shown by asterisks (p < 0.05). Statistical analyses were
performed only for the specific sets of data points shown by the asterisks.

3. Discussion

Our results revealed the transcriptional changes in 14 CYP isoforms, most of which are homologous
to human metabolic CYP isoforms [27] in the whole zebrafish body from just after fertilization to
144 hpf, in comparison with the expression of these isoforms in the zebrafish adult liver. This period
is the one most commonly used for pharmacological and toxicological experiments in this species.
The zebrafish embryo or larva is an ideal model for such studies of whole body metabolism because of
the fish’s very small size. Overall, our data are comparable to those of Goldstone et al. [27], who used a
non-statistical microarray analysis to show transcript levels in embryos and larvae for up to 48 hpf.
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However, cyp2r1 had a clearly sharp peak at 24 hpf in their microarray study, whereas in our qPCR
study its expression level was fairly constant between 4 and 48 hpf but had risen very slightly by 72 hpf
(Figure 2D). We found that the transcript levels of some CYP subtypes—cyp2ad2, 2k18, 2n13, 3a65, 3c/3,
and 3c4 tended to rise from 96 hpf, while xenobiotic metabolism are fully operational by 5 dpf [25],
suggesting that these CYP subtypes were localized in the liver. Nevertheless, the expression of cyp2n13
in the whole embryo or larva was higher than, or comparable to, that in the adult liver (Figure 2C).
Additionally, cyp3a65 expression in the livers of adults of both sexes was significantly lower than in
the whole larva at 120 and 144 hpf (Figure 3A). It is well known that CYP expression profiles in the
liver differ greatly between the adult and fetal livers of humans and rodents [39]. Whereas CYP1A2,
2C, 2E, and 3A4 predominate in the human adult liver, 3A7 predominates in the human fetal liver
and CYP1A2, 2C, 2D6, and 3A5 are most common in the newborn liver [40]. Our study suggests that
conversion of major CYP subtypes between the larval and adult stages also occurs in fish species.
Notably, cyp3a65 was a dominant cyp3 subtype in whole larvae in the later larval stages (96 to 144 hpf)
and cyp3c1 was a dominant cyp3 subtype in the adult livers of both sexes. We previously showed by
using an RNA sequencing technique that cyp3a65 is more abundant than other cyp3 subtypes in the
adult zebrafish livers of both sexes; we compiled comprehensive expression profiles of various CYP
subtypes in the livers of the adult RIKEN WT (wild-type) line [26]. However, if we are to make final
conclusions, further experiments will be needed using different zebrafish lines that are fed with the
same food.

We also found that the mRNA expression of most cyp1 subtypes (cyp1b1, 1c1, 1c2, and 1d1) and
some cyp2 subtypes (cyp2r1, 2y3) at 48 and 72 hpf was comparable to, or higher than, that between
96 and 144 hpf. At various points in the embryonic and larval stages up to 144 hpf, the mRNA
expression of cyp2n13, 3a65 and those CYP subtypes mentioned in the previous sentence (except cyp2r1)
was comparable to, or even higher than, that in the adult liver.

Expression levels of the mRNAs encoding most metabolic CYP isoforms closely reflect the
amounts of the proteins in the human liver, except, for example, in the case of CYP2Es [41]. For CYP2Es,
there are relatively large amounts of mRNA but minor amounts of protein in mammals [42]. There is
no information on developing zebrafish on relative CYP isoform mRNA expression and protein
production as far as we know. Comprehensive studies of the protein abundance of metabolic CYP
isoforms in zebrafish need to be performed in the future.

By using the whole-mount in situ hybridization technique we were able to recognize positive
signals of cyp2n13, 2r1, 2y3, and 3a65, although we rarely detected positive expression of these
CYP subtypes in the vehicle control larvae. Positive signals of these CYP subtypes were detected in
what were possibly the primordia of the air bladder, liver, and intestine in larvae exposed to CYP
inducers, although their inductions were not significant in the qPCR study (Figure S1), possibly because
of the very restricted nature of the induction sites. The primordial liver bud and the primordial
intestine form at about 36 hpf [43]. We previously reported in 50 hpf larvae during TCDD exposure
that mRNA expression of cyp1c1/2 was restricted to branchiogenic primordia and pectoral fin buds,
whereas transcripts of cyp1a were localized in the skin and vasculature throughout the body [36,44].
cyp1b1 is constitutively transcribed in the retina, at the midbrain–hindbrain boundary, and in the
diencephalon region [45]. Therefore, many CYP subtypes are expressed not only in the possible
primordial liver bud but also in the extrahepatic tissues in zebrafish embryos or larvae. The primordial
intestine and the primordial bladder, as well as primordial liver before full liver development,
emerged as important extrahepatic CYP expression sites in our study.

Further data on Ce values are needed to help us understand the uptake patterns of various
compounds in zebrafish embryos and larvae. We therefore analyzed time-series of the Ce values of
caffeine, diclofenac, and testosterone. These values showed different temporal behaviors depending
on the drugs’ lipophilicities. Caffeine is highly water soluble, and its Ce increased linearly and was
still doing so at 120 hpf. Conversely, the Ce values of diclofenac and testosterone, which are highly
fat soluble, peaked at 72 and 48 hpf, respectively, and then gradually decreased; they were still
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decreasing at 120 hpf. These temporal behaviors were almost the same as the previously reported
Ce values of highly water soluble compounds (caffeine and valproate sodium salt), and a highly fat
soluble compound (diethylstilbestrol) in aqueous solution concentrations that caused developmental
abnormalities [10]. In our previous report, we surmised that the gradual decline in the Ce of highly
fat-soluble compounds is caused by a decline in the total lipid concentration in whole embryos or
larvae with aging because of the energetic costs of growth and development [10]. We consider that the
declines observed here had the same causes. Moreover, we observed no peaks other than those of
diclofenac and testosterone on the chromatogram. It is therefore unlikely that the declines in the Ce

values of diclofenac and testosterone were caused by the biotransformation of these compounds.
To confirm that zebrafish embryos and larvae before full liver development have metabolic

activities that are similar to those in humans we exposed zebrafish embryos and larvae to the substrates
of three human CYP isoforms and then quantified the substrates and their metabolites. We detected
1,7-dimethylxanthine (a metabolite of caffeine via human CYP1A2) and 4′-OHDF and 5-OHDF
(metabolites of diclofenac via human CYP2C9 and CYP3A4/5, respectively) in zebrafish embryos
or larvae before and after the time of complete formation of the liver. Although there have been
no previous data on the detection of 1,7-dimethylxanthine in zebrafish embryos, larvae, or adults,
Alderton et al. reported that human CYP1A2-mediated metabolites of tacrine and phenacetin were
detected 7 days post-fertilization (dpf) in zebrafish incubated with those drugs [46]. In a previous
paper, the two metabolites of diclofenac were detected in adult zebrafish liver microsomes and in the
microsomes of two of five batches of whole zebrafish larvae, but only at 96 hpf: no metabolites were
detected in the microsomes at 5, 24, 48, 72, or 120 hpf [22]. However, our embryos and larvae were
exposed continuously to diclofenac until sampling to measure Ce, whereas in the previous report
the microsomes were exposed to diclofenac for only 1 h [22]. These differences in the conditions of
exposure to diclofenac may have resulted in the differences between our results and those of this
other study. Therefore, a novel finding of our study is that zebrafish embryos and larvae in early
development are likely to have metabolic functions similar to those of human CYP1A2, CYP2C9,
and CYP3A4/5 without depending on liver organogenesis.

Quantification of the Ce values of 1,7-dimethylxanthine, 4′-OHDF, and 5-OHDF indicated
differences in the properties of their metabolic activities in zebrafish embryos and larvae. The Ce of
1,7-dimethylxanthine was only about 5% of that of caffeine at both 50 and 120 hpf, suggesting that
zebrafish embryos and larvae have metabolic activity similar to that of human CYP1A2 but that
the activity is low. This trend of low metabolic activity is in agreement with the findings of an
ethoxyresorufin-O-deethylase assay of Cyp1A activity in zebrafish embryos and larvae [47]. Conversely,
in zebrafish embryos and larvae, metabolic activity similar to human CYP2C9- or CYP3A4/5-mediated
metabolism is likely to be high, because the maximum Ce values of 4′-OHDF and 5-OHDF were
543% and 171%, respectively, of that of diclofenac. To our knowledge, this is the first report of the
time-series of Ce values of 4′-OHDF and 5-OHDF every 24 hpf up until 120 hpf in zebrafish embryos
and larvae during exposure to diclofenac. The temporal behaviors of these values were similar in
that they peaked at 72 hpf (4′-OHDF) or 96 hpf (5-OHDF) and then declined by 120 hpf. In general,
in enzymatic reactions, the higher the concentration of the substrate the greater the production of the
metabolite becomes. Moreover, dynamic changes in the mRNA expression levels of CYP isoforms
mediating the metabolism of diclofenac may also influence the temporal behavior of the Ce values
of 4′-OHDF and 5-OHDF. Therefore, we consider that the temporal behavior of the Ce values of
these two metabolites was the combined result of changes in the diclofenac Ce values and changes
in the expression levels of the CYP isoforms mediating diclofenac metabolism. The developmental
changes in the expression of cyp1c1, 1c2 and 2r1 were similar to the time-courses of the metabolic
activities of 4′-OHDF and 5-OHDF, although the transcription levels of cyp2r1 were much lower than
those of the others. Although some CYP1 isoforms, CYP3A65 and CYP3C1, have been relatively well
studied in yeast (Saccharomyces cerevisiae) expression system, only limited information is available
on their metabolic activity with substrates other than caffeine and diclofenac [48–50]. In the future,



Pharmaceuticals 2020, 13, 456 10 of 17

additional experiments, such as in vitro assays with systems of heterogeneous expression of zebrafish
CYP isoform proteins and diclofenac using Escherichia coli or yeast, would reveal which isoforms play
key roles in the production of 4′-OHDF and 5-OHDF in zebrafish.

In contrast to the above results, 6β-hydroxytestosterone, which is a metabolite of testosterone
via human CYP3A4/5, was not detected at 50 or 120 hpf in zebrafish embryos or larvae during
exposure to testosterone. This absence of detection is consistent with previous data on zebrafish
embryos and larvae at up to 120 hpf and in zebrafish adults [22]. Conversely, other studies have
detected 6β-hydroxytestosterone in zebrafish larvae at 7 dpf or in zebrafish adults [2,46]. Chng et al.
detected seven mono-hydroxylated metabolites of testosterone, including 6β-hydroxytestosterone, in
zebrafish [2]. We surmise that the differences in detection of 6β-hydroxytestosterone were caused by
differences in experimental methods or conditions, including the duration of microsome incubation
with the substrate, the stage of use of embryos or larvae, and the zebrafish strain. More detailed studies
are required to clarify the metabolism of testosterone in zebrafish embryos, larvae, and adults.

The activity of the Cyp3A subfamily in zebrafish remains controversial. Here, in zebrafish embryos
and larvae, we found differences in the generation of 5-OHDF and 6β-hydroxytestosterone, which are
metabolites via the same CYP3A4/5 in humans. 3-Methoxymorphinan, which is a metabolite of
dextromethorphan via CYP3A4/5 in humans, has been detected in adult zebrafish liver microsomes,
although no metabolites of this compound have been detected in the microsomes from whole embryos
or larvae at 5, 24, 48, 72, 96, or 120 hpf [22]. Neither 1-hydroxymidazolam nor 4-hydroxymidazolam,
which are metabolites of midazolam via CYP3A4/5 in humans, has been detected in adult zebrafish
liver microsomes or embryonic or larval microsomes or homogenates at up to 7 dpf [22,46]. These data
suggest that there are differences in substrate specificity between humans and zebrafish. Moreover,
even if human CYP3A4/5-mediated metabolites are detectable in zebrafish embryos or larvae or adults,
among developmental stages there may be differences in the intensity of the metabolic activity of the
homologous zebrafish isoform.

In summary, we profiled the mRNA expression levels, organ distribution, and metabolic activity
of various drug-metabolizing CYPs in developing zebrafish embryos and larvae. We suggest that
(1) many metabolic CYP subtypes are expressed before full liver development, and the transcription
levels of some of these subtypes in whole zebrafish embryos or larvae are comparable to, or even higher
than, those in the adult liver; (2) early zebrafish embryos and larvae may have metabolic functions
similar to those of human CYP isoforms (CYP1A2, 2C9, and 3A4/5) without depending on development
of the liver; and (3) there may be differences between humans and zebrafish in the substrate specificity
of some CYP isoforms, as was the case here for human CYP3A4/5-mediated metabolites. In conclusion,
from our results, we consider that the zebrafish is a suitable model for use in the drug discovery
process, especially for drugs with toxic metabolites, and that the metabolic activity in developing
zebrafish need to be clarified in detail for more precise assessment of effects of drugs.

4. Materials and Methods

4.1. Test Organisms and Collection of Fertilized Eggs

Wild-type zebrafish (Danio rerio, NIES-R strain, National Institute for Environmental Studies,
Tsukuba, Japan) were used to study metabolic activity and for qPCR assay for CYP subtypes.
The long-fin strain (maintained in our lab) was used for in situ hybridization. Maintenance of test
organisms and collection of fertilized eggs were performed as described previously [10].

4.2. Exposure of Zebrafish Embryos and Larvae to Test Compounds

For the in situ hybridization studies and qPCR, 10 zebrafish embryos were exposed individually
to 100 µM β-naphthoflavone (Sigma-Aldrich, St. Louis, MO, USA), 1.0 ppb TCDD (Cambridge Isotope
Laboratories, Andover, MA, USA), 100 µM rifampicin (FUJIFILM Wako Pure Chemical, Osaka, Japan),
or 100 µM phenobarbital sodium (Tokyo Kasei, Tokyo, Japan) in 3 mL fish water (38.7 mM NaCl,
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1.0 mM KCl, 1.7 mM HEPES-NaOH pH 7.2, 2.4 mM CaCl2) in a plastic Petri dish during 30 hpf
to 55 hpf. Embryos were dechorionized, except in the case of those exposed to TCDD due to
high transparency. To study the metabolic activity of embryonic and larval zebrafish, caffeine,
diclofenac, testosterone, acetone, acetonitrile, and methanol were purchased from FUJIFILM Wako
Pure Chemical. 1,7-Dimethylxanthine, 4′-OHDF, 5-OHDF, and 6β-hydroxytestosterone were obtained
from Sigma-Aldrich. DMSO was purchased from Nacalai Tesque (Kyoto, Japan).

To calculate the content of each compound per one whole zebrafish embryo or larva (i.e., the Ce),
we first determined the maximum test solution concentrations that caused neither morphological
nor behavioral abnormalities during exposure. Those test solution concentrations were 10 mg/L for
caffeine, 3.2 mg/L for diclofenac, and 3.0 mg/L for testosterone. Each test solution was prepared with
dilution water only (reconstituted water: ISO 6341-1982) [51] in the case of caffeine and diclofenac
and with dilution water containing 0.01% DMSO in the case of testosterone. Beginning at 5 hpf,
normal embryos were exposed to the test solution (>1 mL/embryo) in a glass container. The plastic lid
of the container was kept closed, and the embryos and larvae were maintained for up to 120 hpf at
28 ± 1 ◦C on a 14-h light–10-h dark cycle. The test solution of caffeine and that of diclofenac were not
renewed. The testosterone solution was renewed at 48 hpf to maintain the concentration of testosterone
in the water.

4.3. qPCR

qPCR analysis was performed to examine the expression levels of various CYP subtypes [26].
Total RNA was extracted from embryos, larvae and livers of adult fishes of both sexes with TRI-Reagent
(Sigma-Aldrich), and cDNA was prepared with a ReverTra Ace qPCR kit (Toyobo, Osaka, Japan) in
accordance with the manufacturer’s instructions. We used between 15 and 20 embryos or larvae
for each cDNA sample, and we prepared six cDNA samples for each developmental stage (n = 6).
We prepared 12 cDNA samples from 12 livers of adult fish (six from males and six from females).
qPCR analysis was performed with a LightCycler480 System II (Nippon Genetics, Tokyo, Japan) by
using Thunderbird qPCR Mix (Toyobo). The primer sets used for qPCR analysis are listed in Table S1.

All primer sets were confirmed to produce a single peak in the melting curve, as well as a single
band by agarose gel electrophoresis in a preliminary study.

4.4. Whole-Mount In Situ Hybridization

Whole-mount in situ hybridization was performed as described previously [52].
Paraformaldehyde-fixed embryos were hybridized with digoxigenin-incorporated antisense RNA
probes of CYP subtypes at 65 ◦C overnight (DIG (digoxigenin) RNA Labeling Kit, Sigma-Aldrich).
To obtain the CYP probes, CYP DNAs were amplified by PCR reaction with KOD FX Neo enzyme
solution (Toyobo) with the primer sets listed in Table S2. This was followed by subcloning to pTAC2 TA
vector (BioDynamics, Tokyo, Japan) and in vitro transcription with SP6 RNA polymerase (New England
Biolabs, Ipswich, MA, USA). Following hybridization and washing, the embryos were incubated with
anti-DIG antibody conjugated with alkaline phosphatase (Sigma-Aldrich) at 4 ◦C overnight. The color
reaction was performed by incubation in BM Purple substrate or Fast Red (Sigma-Aldrich).

4.5. Measurement of Test Compound Content per One Whole Zebrafish Embryo or Larva Every 24 hpf

Exposed embryos (three to 20 embryos or larvae per replication, three replicates per level per time
point) were analyzed every 24 hpf up to a maximum of 120 hpf. The chorions of embryos were removed
with forceps under a microscope before sampling for the Ce measurements. The dechorionated embryos
(24 hpf) or the larvae (from 48 hpf onwards) were individually transferred through four beakers
(for about 10 s per beaker) containing 500 mL of fresh dechlorinated tap water to remove chemical
residues on the body surface. After that step, the embryos or larvae were homogenized with a silicone
pestle in a 1.5 mL sampling tube containing a mixed solvent of the same composition as each liquid
chromatography eluent to extract the test compound. The dechorionated embryos or the larvae were



Pharmaceuticals 2020, 13, 456 12 of 17

homogenized to extract the test compound. The mixture was centrifuged at 20,000× g for 10 min
at 10 ◦C with a refrigerated centrifuge (CR21N, Hitachi Koki, Tokyo, Japan). The supernatant was
collected in a volumetric flask. The extraction procedure was performed twice, and the supernatants
from the two batches were mixed and brought up to a volume of 1 mL with the mixed solvent of the
same composition as each liquid chromatography eluent to extract the test compound. They were
then filtered through a Millex-LG membrane filter with a 0.2 µm pore size (Merck KGaA, Darmstadt,
Germany). Standard solutions of each test compound without adding mixture of embryos or larvae in
the control were used to make each calibration curve, because no matrix effect was recognized.

For caffeine and testosterone, the treated samples were analyzed by high-performance liquid
chromatography by using an LC-20AD solvent delivery system (Shimadzu, Kyoto, Japan) equipped
with an L-column2 ODS (octadecyl–silica) column (length, 150 mm; inner diameter, 4.6 mm for
caffeine or 2.1 mm for testosterone; particle size, 5 µm; Chemicals Evaluation and Research Institute,
Tokyo, Japan). Caffeine and testosterone were detected by an SPD-20AV UV-VIS (ultraviolet–visible
light) detector (Shimadzu). Samples (50 µL for caffeine; 20 µL for testosterone) were eluted in each
mobile phase of methanol: water = 2:8 v/v for caffeine and acetonitrile: water = 1:1 v/v for testosterone.
Flow rates were 1.00 mL/min for caffeine and 0.20 mL/min for testosterone. These compounds were
detected by UV light of different wavelengths (270 nm for caffeine and 241 nm for testosterone).

For diclofenac, treated samples were measured by liquid chromatography–tandem mass
spectrometry (LC-MS/MS) analysis with an LCMS-8060 triple quadrupole mass spectrometer
(Shimadzu) and a Nexera X2 ultra high-performance liquid chromatograph (Shimadzu) equipped with
an ACQUITY UPLC BEH C18 column (length, 50 mm; inner diameter, 2.1 mm; particle size, 1.7 µm;
Nihon Waters, Tokyo, Japan). Each 10 µL sample was eluted at a flow rate of 0.30 mL/min and in
the following gradient mobile phase of water with 0.1% formic acid (A) and acetonitrile with 0.1%
formic acid: 0 to 1 min 80% A; 1 to 35 min 80% to 65% A; and 35 to 45 min 65% A. Diclofenac was
monitored by using an electrospray ionization (ESI) probe. Data were acquired in positive ion mode
by using multiple reaction monitoring (MRM). The temperatures applied were, for the auto sampler
5 ◦C, column 40 ◦C, interface 300 ◦C, desolvation 526 ◦C, desolvation line 240 ◦C, and heat block
400 ◦C. The flow rates were, for the nebulizer gas 1.50 L/min, heating gas 10.00 L/min, and drying gas
10.00 L/min. Three transitions were monitored for diclofenac: the precursor ion m/z, product ion m/z,
Q1 pre-bias, collision energy, and Q3 pre-bias were, respectively, (1) 296.10, 215.10, −11.0 V, −19.0 V,
and −22.0 V; (2) 296.10, 250.00, −11.0 V, −13.0 V, and −26.0 V; and (3) 296.10, 278.00, −14.0 V, −10.0 V,
and −30.0 V.

In these experiments, the concentrations of each test compound in the water (Cws) were measured.
For caffeine and diclofenac, Cws were measured at the start and end of the exposure period.
For testosterone, the test solutions were analyzed in two sets: (1) solutions freshly prepared at
the start of exposure and at 48 hpf and (2) solutions before renewal at 48 hpf and at the end of the
exposure period. Sampled solutions were diluted with a solution of the same composition as the
eluent for each compound. The equipment and conditions for measuring the Cw values of caffeine,
diclofenac, and testosterone were the same as those used to measure their Ce values.

4.6. Measurement of Test Compound Metabolite Contents in Zebrafish Embryos and Larvae

To measure the Ce values of the target metabolites of test compounds during exposure, larvae were
analyzed at 50 hpf and 120 hpf in the case of 1,7-dimethylxanthine and 6β-hydroxytestosterone,
and embryos or larvae were analyzed every 24 hpf until 120 hpf in the case of 4′-OHDF and 5-OHDF.

For 1,7-dimethylxanthine and 6β-hydroxytestosterone, exposed larvae (200 to 1000 larvae per
replication, three replicates per level per time point for 1,7-dimethylxanthine, one replicate per level
per time point for 6β-hydroxytestosterone) were collected into a centrifuge tube containing acetone
and homogenized by using a Polytron homogenizer (PT3100, Kinematica AG, Lucerne, Switzerland)
to extract the test compound. Then, the mixture was centrifuged at 20,000× g for 15 min at 10 ◦C with
a refrigerated centrifuge (CR21N, Hitachi Koki). The supernatant was collected in a sampling tube.
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The extraction procedure was performed twice. The supernatants of two batches were mixed and
the mixture was evaporated completely by nitrogen gas spraying. A solution (500 µL) of the same
composition as the eluent for each compound was added to the tube, and then the solution was filtered
through a Millex-LG membrane filter with a 0.2-µm pore size (Merck). The filtrate was double diluted
with a solution of the same composition as the eluent for each compound, and the resulting solution
was mixed to prepare the sample for measurement. For 1,7-dimethylxanthine, to standardize the
content of the larval matrix, a mixture of larvae in the control or the vehicle control was added to each
standard solution in a stepwise concentration to create each calibration curve.

For 1,7-dimethylxanthine, the treated samples were analyzed by LC-MS with an LCMS-8060
(Shimadzu) and a Nexera X2 (Shimadzu) equipped with an ACQUITY UPLC BEH C18 column
(length, 50 mm; inner diameter, 2.1 mm; particle size, 1.7 µm; Nihon Waters). Each 5 µL sample
was eluted in a mobile phase of methanol: water = 2:8 at a flow rate of 0.20 mL/min. 1,7-dimethylxanthine
was monitored by using an ESI probe. Data were acquired in positive ion mode by using MRM.
The temperatures applied were, for the auto sampler 5 ◦C, column 40 ◦C, interface 300 ◦C, desolvation line
240 ◦C, and heat block 400 ◦C. The flow rates were, for the nebulizer gas 1.50 L/min, heating gas 10.00 L/min,
and drying gas 10.00 L/min. One transition was monitored for 1,7-dimethylxanthine: the precursor ion
m/z, product ion m/z, Q1 pre-bias, collision energy, and Q3 pre-bias were respectively 181.20, 124.20,
−11.0 V, −20.0 V, and −12.0 V.

For 6β-hydroxytestosterone, the treated samples were analyzed by LC-MS with an LCMS-8060
(Shimadzu) and a Nexera X2 (Shimadzu) equipped with an ACQUITY UPLC BEH C18 column
(length, 50 mm; inner diameter, 2.1 mm; particle size, 1.7 µm; Nihon Waters). Each 10 µL sample
was eluted in a mobile phase of acetonitrile (with 0.1% formic acid): water (with 0.1% formic acid)
= 3:7 at a flow rate of 0.20 mL/min. 6β-hydroxytestosterone was monitored by using an ESI probe.
Data were acquired in positive ion mode by using MRM. The temperatures applied were, for the
auto sampler 5 ◦C, column 40 ◦C, interface 300 ◦C, desolvation line 240 ◦C, and heat block 400 ◦C.
The flow rates were, for the nebulizer gas 1.50 L/min, heating gas 10.00 L/min, and drying gas
10.00 L/min. Two transitions were monitored in the case of 6β-hydroxytestosterone: the precursor ion
m/z, product ion m/z, Q1 pre-bias, collision energy, and Q3 pre-bias were respectively (1) 305.00, 269.40,
−21.0 V, −16.0 V, and −18.0V; and (2) 305.00, 287.30, −22.0 V, −15.0 V, and −29.0 V.

For 4′-OHDF and 5-OHDF, LC-MS/MS was used to analyze the same samples as treated in the
experiment for measuring the Ce values of diclofenac, without dilution. Standard control solutions
without addition of the mixture were used to make each calibration curve, because no matrix effect was
recognized. The equipment and conditions, with the exception of the target ion for monitoring, were the
same as used to measure the Ce values of diclofenac. The same three transitions were monitored for
4′-OHDF and 5-OHDF: the precursor ion m/z, product ion m/z, Q1 pre-bias, collision energy, and Q3
pre-bias were respectively (1) 312.10, 231.10, −22.0 V, −21.0 V, and −24.0V; (2) 312.10, 266.00, −16.0 V,
−13.0 V, and −17.0 V; and (3) 312.10, 294.00, −16.0 V, −11.0 V, and −13.0 V.

4.7. Quantification of Analytical Samples

A calibration curve for each target substance (regression equation by using the least-squares
method: Y = aX + b, where Y is the analytical response and X is the concentration of the target
substance) was made by using four or five concentrations of standard solution. We confirmed that
each calibration curve met the following criteria: (i) The correlation coefficient (r) was >0.995; and (ii)
the absolute value of the intercept (b) was within 5% of the maximum analytical response and the
linear regression line was treated as a straight line from the origin. Then, all target substances were
quantified by using the absolute calibration curve method and one concentration of standard solution.
For all substances except 4′-OHDF and 5-OHDF, the peak area obtained from each chromatogram was
treated as the analytical response. Because the abovementioned conditions did not allow us to separate
4′-OHDF and 5-OHDF chromatographically, each peak height obtained from the chromatogram was
treated as the analytical response for both 4′-OHDF and 5-OHDF.
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4.8. Statistics

In the qPCR experiment, the results are presented as means ± SEM (n = 6). Expression levels
were compared between the respective control and the comparison groups by using one-way ANOVA
followed by Dunnett’s test by means of Statcel 4 (OMS Publishing, Higashikurume, Japan) (p < 0.05).
Results from the measurement of Ce values are presented as means ± SD (n = 3), and significant
differences between two specific Ce values were determined by two-tailed t-test (p < 0.05) by means of
SPSS statistics version 22 (IBM, Armonk, NY, USA).

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/12/456/s1:
Table S1: Primers used for quantitative real-time PCR, Table S2: Primers used for preparation of probes for in
situ hybridization, Figure S1: Effects of cytochrome P450 inducers on expression of a several CYP subtypes.
Zebrafish embryos or larvae were exposed to 100 µM rifampicin (R) and 100 µM β-naphthoflavone (NF) from
26 hpf. VC means vehicle control (0.1% DMSO). cDNAs of larval zebrafish were prepared at 55 hpf for qPCR
measurement of some CYP subtypes that showed positive signals by inducers with in situ hybridization.
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Abbreviations

4′-OHDF 4′-hydroxydiclofenac
5-OHDF 5-hydroxydiclofenac
Ce content of compound in whole zebrafish embryos or larvae
Cw concentration of each compound in water
CYP cytochrome P450
diclofenac diclofenac sodium salt
DIG digoxigenin
DMSO dimethyl sulfoxide
dpf days post-fertilization
ESI electrospray ionization
hpf hours post-fertilization
Kow n-octanol–water partition coefficient
LC-MS/MS liquid chromatography—tandem mass spectrometry
MRM multiple reaction monitoring
ODS octadecyl–silica
qPCR quantitative real-time polymerase chain reaction
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
UV-VIS ultraviolet–visible light
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