
REMOTELY SENSED METHOD FOR DETECTION OF SPATIAL DISTRIBUTION 

PATTERN OF DRYLAND PLANTS IN WATER LIMITED ECOSYSTEM 

 

Buho Hoshino1*, Ying Tian1, Keita Shima1, Su Riga1, Zoljarga Enkhtuvshin2, Christopher McCarthy3, 

Myagmartseren Purevtseren4 

 

1 Laboratory of Environmental Remote Sensing, Rakuno Gakuen University, Ebetsu, 069-8501, Japan 

(* Corresponding author, Buho Hoshino, aosier@rakuno.ac.jp) 

2 Mongolian Hydrological, Meteorological and Environmental Center of Sainshand, Mongolia 

3 University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA 

4 Department of Geography, National University of Mongolia, Ulaanbaatar 14200, Mongolia 
 

ABSTRACT 

 

The Gobi Desert in Mongolia is characterized by sparse and 

patchy vegetation, interspersed with essentially bare areas. 

The vegetation pattern is typically formed by perennial 

shrubs, grasses or annually-herbaceous plant overlying a 

matrix composed of bare soil. Vegetation patterns, most 

broadly, refer to the spatial organization of vegetation in a 

landscape. However, since the plants in the Gobi Desert are 

sparsely distributed over a vast bare field, it is extremely 

difficult to accurately observe from satellite imagery. This is 

because reflectance of dry soil is very high and the 

reflectance of slightly distributed plants is eliminated by soil 

reflection. This study solves this problem by using field 

surveys and methods for combining different satellite sensor 

data and spectral un-mixing analysis. As a result, the pixel 

NDVI value of desert plants shows a smaller value than the 

ground measurement. It is shown that the fraction of the 

vegetation endmember after pixel un-mixing has a 

remarkably high correlation with the field measured values 

(where, R2=0.51 between NDVI of Landsat 8 imagery 

original pixels and un-mixed pixels and R2=0.79 between 

plants coverage of field measurement and un-mixed pixels 

percentage of vegetation endmembers). 

 

Index Terms—Spectral un-mixing, spatial distribution 

pattern of dryland plants, Landsat, field measurement. 

 

1. INTRODUCTION 

 

Arid and semi-arid drylands account for 41.3% of the 

Earth’s surface. Globally, 2.1 billion people live in dryland 

environments, meaning that drylands are home to one in 

three people. According to UN-Habitat, the 18.5% 

population growth rate in drylands was faster than that of 

any other ecological zone [1-2].  

Desertification refers to degradation of land in arid, 

semi-arid and sub-humid areas resulting from various factors, 

including climatic variations and human activities. When 

land degradation occurs in the world's drylands, it often 

creates desert-like conditions. Globally, 24% of all 

terrestrial lands is degrading. About 1.5 billion people 

directly depend on these degraded areas. Nearly 20% of the 

degrading land is cropland, and 20-25%, rangeland, of 

which the grasslands of the Mongolian plateau are classified 

[2-3]. 

Vegetation patterns have a global distribution in semi-

arid ecosystems, suggesting that rather than being a species 

or area-species trait, the phenomenon of vegetation 

patterning arises as a response to environmental conditions 

in these regions [4]. Ecological pattern formation at the level 

of whole ecosystems is a new, exciting, and rapidly growing 

research area, whose study is influenced strongly by 

Turing’s ideas of pattern formation theory. Self-organised 

patterns of vegetation are a characteristic feature of many 

semi-arid regions. Mathematical modelling is widely used to 

study these banded patterns, because there are no laboratory 

replicates [5].  However, since the plants in the Gobi Desert 

are sparsely distributed (dot distributed pattern) over a vast 

bare field, it is extremely difficult to accurately observe from 

the satellite imagery. Accurately grasping the physiological 

and ecological characteristics of plants in desert areas and 

the distribution of plants is very important for preserving 

endemic species and validation of afforestation efficiency in 

drylands [4-5]. 

In this study, we first used Linear Spectral Unmixing 

(LSU) to determine the relative abundance of vegetation that 

is depicted in multispectral satellite imagery based on 

vegetation-bare soil-water spectral characteristics. Second, 

we setup 20 plots at 4-sites within different rainfall regions 

and conducted field surveys to measure the coverage, height 

and spectral reflectance of plants in the Gobi Desert region. 

We verified the result of spectral un-mixing using field 

survey data, suggesting that there is a high correlation. 

 

2. MATERIALS AND METHODS 



 

2.1 The Study Area 

Four sites (size of 250 square meters) with different annual 

rainfall amounts were selected as study areas, and five plots 

of 10 square meters were set up in each site (see Fig. 1a). 

The northern most site, located at Ulaanbaatar, is a semi-arid 

area, with annual rainfall about 300 mm. The southernmost 

site, located in the Gobi Desert (Tsogt-Ovoo, site1) is an 

arid area, where annual rainfall is 40 mm or less. However, 

annual rainfall during 2007 and 2016 at both of these sites 

showed an increasing trend. There was no significant change 

in the annual average temperature. 

 

 
Fig. 1 (a) Map of annual precipitation and  location of study 

sites (UB-Ulaanbaatar City (site 4); MG-Mandal Gobi (site 

3); DZ-Dalanzadgad (site 2); and TO-Tsogt-Ovoo (site 1); 

(b) Distribution pattern of plants in drylands of Mongolia 

(The horizontal axis shows annual mean precipitation); (c) 

Field photos at different precipitation points. 

 

2.2 Data analysis 

2.2.1 Ground Truth Data 

The leaf scale spectral reflectance’s (the photosynthetic 

activity of leaves), plant volume (cm3) and soil moisture in 

the plot were measured during the spring and summer of 

2015-2018.  

 

2.2.2 Calculation of survival ratio of plants 

Hardenberg et al. (2004) [6] and Kéfi, et al. (2007) [7-8] 

developed the vegetation patches formation and spatial 

vegetation patterns model in "water-limited ecosystems" (see 

equation (1)(2)). Among these, for the biomass density n(x, 

t)  and, the logistic equation (1st term-plant growth, where is 

dry matter productivity (DMP) and fourth item-plant 

dispersal) which has a positive correlation with moisture in 

the formula (1), and the amount of the 2nd and 3rd variables 

shows the vegetation loss due to livestock and wildlife 

feeding. For the groundwater density w(x, t), including 

rainfall P (the 1st variable), evaporation (the 2nd variable 

suppressed by vegetation), and groundwater and soil 

moisture uptake by plants (3rd variable) and downhill flow 

(4th variable) according to the equation (2). This research 

realized the field verification of this equation. 
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In this study, we calculated how long the vegetation that 

grew in summer survived through autumn and winter and the 

following spring. To calculate the survival ratio of plants we 

used the following equation, 

 

      (3) 

 

2.2.3 Linear Spectral Un-mixing 

The reflectance at each pixel of the image is assumed to 

be a linear combination of the reflectance of each material 

(or endmember) present within the pixel. The fundamental 

concept underlying Linear Unmixing calculations is that 

each pixel in the spectral image is categorized as 

representing a mixture of endmember signals (intensities) 

when the measured spectrum (M(λ)) can be deconvolved 

into the proportion (P) of each individual endmember 

reference spectrum (R(λ)) when the values are summed. 

Thus, each reference spectrum of a pure endmember is 

described as Ri(λ) where i = 1,2,3.....N represents the index 

of the end members (Pi). For a particular number of 

endmembers (n), this relationship can be represented as 

[9]: 

 

                           (4) 

 

Where M (λ) is the effective reflectance of the mixed 

pixel; Pi is the spatial fraction covered by the ith material; 

Ri(λ) is the reflectance of the ith endmember; N is the 

number of materials in the pixel; λ is a band (or wavelength). 

Given the resulting spectrum (the input data) and the 

endmember spectra, Linear Spectral Unmixing solves for the 

abundance values of each endmember for every pixel. The 

number of endmembers must be less than the number of 

spectral bands, and all of the endmembers in the image must 

be used. Spectral unmixing results are highly dependent on 

the input endmembers; changing the endmembers changes 

the results. For many Linear Unmixing software packages, 

the solution is obtained by inputting reference spectral 

profiles and using an inverse least squares fitting approach 

that minimizes the square difference between the measured 

and the calculated spectra. 

Linear Spectral Unmixing has two constraint options: 

unconstrained or a partially constrained unmixing. In the 

unconstrained method, abundances may assume negative 

values and are not constrained to sum-to-unity. In this study, 

we use ENVI software methodology. The ENVI methods 

also support an optional, variable-weight, unit-sum 

constraint in the linear-mixing algorithm. This allows you to 

define the weight of a sum-to-unity constraint on the 



abundance fractions. It also permits proper unmixing of 

MNF transform data, with zero-mean bands. 

 

3 RESULTS 

 

3.1 Calculation and measurement results of plant 

survival rate  

 

As shown in Fig. 2, the ratio of NDVI calculated from the 

Landsat 8 satellite data (equation (3)) was very low in the 

annual plants distribution area and very high in the perennial 

plants distribution area.  It has been shown that perennial 

shrubs, such as Saxaul tree (Haloxylon ammodendron) can 

survive the extremely dry environment and winter season in 

the Gobi Desert region harsh condition of Mongolia. 

 
Fig. 2 The survival ratio NDVI calculation results for perennial 

and annual plants (where, the upper part of the image shows the 

annual plant area, and the lower part of image shows the perennial 

plant area). 

 

A high NDVI ratio indicates a high plant survival rate. 

Plant loss is primarily due to feeding by livestock and 

wildlife, loss of moisture, and movement by wind. The 

remaining plants can be used as livestock feed, and can 

suppress desert and dust storms. As shown in Fig. 2, it was 

suggested that the residual quantity of annual plants at the 

Ulaanbaatar study site is small, and the residual quantity is 

higher at the Gobi Desert sites (TO, DZ) where perennial 

plants are dominant. Fig. 3 shows field measurements of 

plants coverage at the study sites. 

The result was opposite to the survival rate of plants (or 

NDVI ratio). In other words, it showed a high value in the 

annual plants distribution area and a low value in the 

perennial distribution area. 
 

3.2 Vegetation pattern and the spatial fractional 

coverage of Gobi plants 
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Fig. 3   Field measurement of average value of plant coverage (%) 

in (10m ×10m) quadrat area 

 

In semi-arid areas where annual precipitation is more than 

150 mm, annual herbaceous plants are dense, so the 

landscape is like a green carpet. However, in arid areas 

where annual precipitation is 150 mm or less, the perennial 

shrubs are sparsely distributed in dotted patterns across bare 

land (see Fig. 4). 

 

 
Fig. 4 Simulation results of dimensionless biomass (NDVI) along a 

gradient of decreasing water stress (precipitation) for (UB) – 

Ulaanbaatar; (MG)-Mandal-Gov; (DZ)-Dalanzadgad; and (TO)-

Tsogt-Ovoo based on simplified equation (1) and (2). To refine the 

representation of biomass transport, the diffusion term in the P 

equation is replaced by a convolution of a dispersion kernel and 

standing biomass, defining the seed rain about a parent plant. 

 

In the Gobi Desert region, plants are sparsely distributed 

across bare ground. In such places, it is difficult to estimate 

accurate plant quantity from intermediate resolution satellite 

data like Landsat imagery. In this paper, the linear unmixing 

method (equation (4)) is used to decompose pixels of 

Landsat 8 satellite imagery and the results were verified in 

the field. Comparing the NDVI calculated from the 

calibrated pixels (reflectance of pixels) of the Landsat 8 

satellite data in the target pixel shown in Fig. 5(a,b). It was 

suggested that there is a high correlation between the NDVI 

original pixels and the unmixing pixels in Landsat 8 imagery. 



 

 
Fig. 5 Comparision result of the NDVI value of Landsat 8 original 

pixels (left panel) and the field measurement of vegetation 

coverage (%) with the Landsat 8 pixels unmixing spatial fraction 

coverage of vegetation (VGT) in the same target pixel of each plot. 
 

Comparing the Landsat 8 pixels unmixing spatial 

fraction coverage of vegetation (VGT) with field 

measurements of vegetation coverage in the target pixel of 

each plot, it was suggested that there is a high correlation 

between the unmixing pixels in Landsat 8 imagery and field 

measurement of vegetation coverage. The spatial resolution 

of Landsat satellite data was 30 square meters, while the size 

of the plant identification survey in the field was 10 square 

meters. As a result, the variability increased in semi-arid 

areas where the percentage of vegetation covered by annual 

herbaceous plants was 40%. The measured value and the 

unmixing fraction coverage value showed a very high 

correlation at the site where the vegetation coverage was 

50% or 10%. 

  

4 DISCUSSION 
 

Pattern-formation theory predicts that vegetation gap 

patterns, such as those found in the harsh condition of 

Mongolia’s Gobi Desert region, emerge through the action 

of pattern-forming biomass–water feedbacks and that such 

patterns should be found elsewhere in water-limited systems 

around the world [5]. We report here the exciting discovery 

of self-organized patterns (dot distribution patterns) of 

vegetation in the Gobi Desert of Mongolia. Using fieldwork, 

remote sensing, spatial pattern analysis, mathematical 

modeling, and pattern-formation theory we show that self-

organized patterns do in fact occur in the Gobi Desert of 

Mongolia. Since the plants in the Gobi Desert are dot 

distributed over bare ground, the satellite pixel synthesized 

there is greatly influenced by the high reflection of 

background bare soil [10-12]. In areas where annually low 

grass vegetation is sparsely distributed, even when the 

vegetation coverage is 40%, the values when synthesizing 

the satellite pixels vary greatly between the measured values. 

As a result, the variability increased in semi-arid areas where 

the percentage of vegetation covered by annual herbaceous 

plants was 40%. The measured value and the unmixing 

fraction coverage value showed a very high correlation at 

the study site where the vegetation coverage was 50% or 

10%. Where, the areas with 10% vegetation coverage are 

Gobi Desert sites and the site with 40% vegetation coverage 

is degraded pasture land near the capital city of Ulaanbaatar. 
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