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ABSTRACT.	 Instrument cost is a major problem for the transduction of DNA fragments and 
proteins into cells. Water-in-oil droplet electroporation (droplet-EP) was recently invented as a 
low-cost and effective method for the transfection of plasmids into cultured human cells. We 
here applied droplet-EP to livestock animal cells. Although it is difficult to transfect plasmids into 
bovine fibroblasts using conventional lipofection methods, droplet-EP enabled us to introduce an 
enhanced green fluorescent protein (EGFP)-expressing plasmid into bovine earlobe fibroblasts. 
The optimal transfection condition was 3.0 kV, which allowed 19.1% of the cells to be transfected. 
For swine earlobe fibroblasts, the maximum transfection efficacy was 14.0% at 4.0 kV. After 
transfection with droplet-EP, 69.1% of bovine and 76.5% of swine cells were viable. Furthermore, 
droplet-EP successfully transduced Escherichia coli recombinant EGFP into frozen-thawed bovine 
sperm at 1.5 kV. Flow cytometry analysis revealed that 71.5% of spermatozoa exhibited green 
fluorescence after transfection. Overall, droplet-EP is suitable for the transfection of plasmids and 
proteins into cultured livestock animal cells.
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Transfection is a non-viral procedure for the delivery of exogenous nucleic acids and proteins into cultured cells or individuals 
to potentiate or disrupt cellular functions [3, 22]. Numerous studies reported various transfection procedures, such as the phosphate 
calcium method [21], diethylaminoethyl-dextran method [31], and lipofection [11]. Although several reports have demonstrated 
that lipofection successfully transfected plasmids to bovine or swine-derived cultured cells [20, 34], we and other investigators 
found that transfection efficiency by lipofection was markedly lower in bovine fibroblasts compared with that observed in human 
or mouse fibroblasts [19, 20, 47]. It is therefore necessary to establish efficient transfection methods for livestock animals.

Electroporation (EP) is another popular transfection method, rendering the plasma membrane transiently permeable under 
a strong electric pulse. This effect results in the transfer of membrane-impermeant substances into cells [35]. EP offers several 
advantages (such as versatile application, low cytotoxicity, and simple operation) over other transfection methods [14, 29]. 
Moreover, EP is applicable to the transfection of various materials (e.g., DNA and RNA fragments, plasmids, and recombinant 
proteins) using a single apparatus [9, 13, 35]. On the other hand, the high cost of the apparatus is a major problem hindering the 
widespread use of this method. In 2019, the cost of most commercially available electroporators was >10,000 USD.

Droplet-EP is a novel EP approach involving an entirely different mechanism from conventional EP [24, 25]. In this method, 
the cells are encapsulated in a medium droplet. The droplet is then floated in silicone oil, and charged by applying a direct 
current (DC) electric field to create pores on the plasma membrane. The cost of a droplet-EP apparatus (DC power source) is 
approximately one-tenth to one-fifth of the cost of a commercially available electroporator. It is of note that droplet-EP has 
been shown to effectively introduce plasmids into the human embryonic kidney cell line HEK293 [24, 25]. However, thus far 
the applicability of droplet-EP to livestock cells has not been evaluated. In this study, we attempted to transfect a plasmid and a 
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recombinant protein to bovine and swine cells by using droplet-EP.

MATERIALS AND METHODS

Bovine ear-derived fibroblasts and swine ear-derived fibroblasts
Bovine earlobe fibroblasts have been previously reported [19]. Pieces of swine earlobes were obtained from the Rakuno Gakuen 

Field Education Center (Ebetsu, Japan) when pigs (aged 3 days) were ear-notched. The swine earlobe tissue blocks were cut into 
fragments, and vigorously washed with phosphate-buffered saline (PBS) containing 200 U/ml penicillin, 200 µg/ml streptomycin, 
and 500 ng/ml amphotericin B (Nacalai Tesque, Kyoto, Japan). Subsequently, the tissues were treated with 2 mg/ml collagenase 
type I (Wako Pure Chemical, Osaka, Japan) in Tyrode’s solution and cut into small pieces using scissors. The tissue slices were 
further digested for 30 min at 37°C with strong agitation. After extensive washing with PBS and centrifugation, the pellet was 
resuspended in Dulbecco’s modified Eagle medium (DMEM) containing 10% fetal calf serum (FCS), 200 U/ml penicillin, 200 µg/
ml streptomycin, and 500 ng/ml amphotericin, and filtrated with a cell strainer (70 µm; Corning, New York, NY, USA) to remove 
debris. The cells were cultured in DMEM supplemented with 10% FCS at 37°C, 5% carbon dioxide, and 95% humidity.

Enhanced green fluorescent protein (EGFP)-encoding plasmid
The pEGFP-N2 plasmid was purchased from Takara Bio (Kusatsu, Japan). The plasmid was prepared from Escherichia coli (E. 

coli) DH5α using a FavorPrep Plasmid DNA Extraction Midi Kit (Favorgen, Ping-Tung, Taiwan).

Water-in-oil droplet EP of EGFP-encoding plasmid to bovine or swine fibroblasts
Droplet-EP was performed as previously reported with some modifications [24, 25]. One well of a 24-well cell culture plate 

was layered with 1 ml silicone oil (KF96-1; Shin-Etsu Chemical, Tokyo, Japan) on 1.5 ml of fluorocarbon oil (Fluorinert FC-96; 
3M, Maplewood, MN, USA). The anode and cathode were set at a 6 mm interval. The parameters for each experiment are shown 
in Table 1. Bovine and swine fibroblasts were detached by treatment with trypsin, and washed with DMEM supplemented with 
10% FCS twice. After counting cell number, the cell were resuspended in DMEM without FCS. To date, we employed DMEM 
as a vehicle of droplet-EP when we collected basic transfection data of mouse and human cells. Therefore, we used DMEM for 
transfection of the plasmid to bovine or swine fibroblasts. A droplet including the cells and transfected materials was gently added 
into the silicone oil phase in the well. Through a strong charge applied using a DC High Voltage power supply (HAR-30R10; 
Matsusada Precision, Kusatsu, Japan), the droplet was elongated and attached to both electrodes, resulting in the generation of a 
short circuit. Subsequently, the droplet was retrieved and transferred to the culture medium.

Microscopic observation
Fibroblasts seeded on a collagen-coated cover glass slide were fixed with 4% paraformaldehyde for 10 min at room temperature. 

After a thorough wash with PBS, the cells were stained with Hoechst33342 (Thermo Fisher Scientific, Waltham, MA, USA) for 
5 min at room temperature. The cover glass was embedded on the cell-seeded glass slide with 50% glycerol, and the cells were 
observed using a C2 confocal microscope (Nikon, Tokyo, Japan). Scanned images were analyzed using ImageJ software [42]. 
Transfection efficiency was determined as the ratio of the number of EGFP-positive cells to Hoechst33342-positive cells.

Cell viability
Cell viability was evaluated immediately after droplet-EP or conventional EP. Dead cells were stained with 0.5% trypan blue 

(Nacalai Tesque). Cell viability was calculated as the ratio of the number of non-stained cells to total cells.

Transfection of EGFP-encoding plasmid to bovine or swine fibroblasts using NEPA21
As a reference of gene transfection, we performed transfection of the EGFP-encoding plasmid using a NEPA21 electroporator 

(Nepagene, Chiba, Japan) according to the protocol provided by the manufacturer. Briefly, 1.0 × 106 trypsinized bovine or swine 
fibroblasts and 10 µg of pEGFP-N2 plasmid in 100 µl of DMEM (Thermo Fisher Scientific) were placed in a 2 mm-gap cuvette 
(Nepagene) and pulsed using NEPA21. The parameters for the transfection pulse were as follows: poring pulse voltage: 275 V; 
pulse length: 2.5 msec; pulse interval: 50 msec; number of pulses: 2; decay rate: 10%; polarity +, and transfer pulse voltage: 20 V; 
pulse length: 50 msec; pulse interval: 50 msec; number of pulses: 5; decay rate: 40%; and polarity +/−. The cells were then rapidly 
transferred to a cell culture plate filled with DMEM containing 10% FCS.

Table 1.	 Transfection condition

Transfected cell # of Cell 
(×105) Plasmid/Protein Size of 

plasmid/protein
Amount of plasmid/

protein (pmol) Solvent Droplet volume 
(µl)

Bovine fibroblast 1.0 pEGFP-N2 4.7 kb 0.121 DMEM 3.0
Swine fibroblast 1.0 pEGFP-N2 4.7 kb 0.121 DMEM 3.0
Murine sperm 5.0 EGFP protein 27 kDa 0.605 Opti-MEM® 10.0
Bovine sperm 5.0 EGFP protein 27 kDa 0.605 Opti-MEM® 10.0
DMEM, Dulbecco’s Modified Eagle Medium; EGFP, enhanced green fluorescent protein.
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Transfection of EGFP plasmid to bovine fibroblasts by lipofection
Bovine earlobe fibroblasts were transfected with pEGFP-N2 using Lipofectamine 2000 (Thermo Fisher Scientific), 

Lipofectamine LTX (Thermo Fisher Scientific), Fugene 6 (Promega, Madison, WI, USA), or Fugene HD (Promega) according to 
the instructions provided by the manufacturer. Briefly, 0.2, 0.1, 0.1, and 0.1 µg of the EGFP-encoding plasmid was encapsulated 
with Lipofectamine 2000, Lipofectamine LTX, Fugene 6, and Fugene HD, respectively. The liposome-and DNA complexes were 
subsequently supplemented to 1 × 104 adherent bovine fibroblasts. After 4 hr incubation, the medium was exchanged to DMEM 
supplemented with 10% FCS. The cells were observed using a fluorescence inverted microscopy IX71 (Olympus, Tokyo, Japan) 
with a cooled CCD camera DP73 (Olympus) at 24 hr after the transfection.

Preparation of recombinant EGFP
Recombinant EGFP was prepared as previously described [48]. The pET-His6-GFP-TEV-LIC plasmid was obtained from 

Addgene (Cambridge, MA, USA). The plasmid was introduced to E. coli BL21 (DE3) (BioDynamics Laboratory, Tokyo, Japan). 
The plasmid-introduced E. coli clone was treated with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG, Nacalai Tesque) for 3 
hr. After centrifugation at 3,000 ×g for 20 min, the bacterial pellet was lysed with 20% Triton X-100 on ice, followed by sonication 
using a VP-050 sonicator (Taitec, Koshigaya, Japan). After centrifugation at 13,000 × g for 30 min at 4°C, the supernatant was 
collected. For the purification of EGFP, HisPur Cobalt Resin (Thermo Fisher Scientific) was used according to the instructions 
provided by the manufacturer.

Droplet-EP of recombinant EGFP protein to mouse or bovine sperm
Mature (aged 12–15 weeks) male C57BL/6J mice (SLC, Hamamatsu, Japan) were sacrificed through cervical dislocation under 

anesthesia with 100 mg/kg of sodium pentobarbital. The sperm of mice was collected from the cauda epididymides. Frozen bovine 
sperm in straws was kindly gifted by Genetics Hokkaido Association (Sapporo, Japan). To recover sperm activity, both mouse 
and bovine sperm in Opti-MEM (200 µl), covered with liquid paraffin (Wako Pure Chemical), was pre-incubated at 37°C for 
1.5 hr [45]. After centrifugation at 1,000 × g for 5 min, the sperm was resuspended in a drop of 10 µl Opti-MEM. To minimize 
lot difference, we selected Opti-MEM for a pre-conditioning and transfection medium. A droplet (3 or 10 µl) including the 
sperm and EGFP was gently floated in the silicone oil layer in the well. Immediately after droplet-EP was performed, the droplet 
was retrieved. The parameters for droplet-EP of EGFP protein to the sperm are listed in Table 1. The procedures of the animal 
experiments were approved by the Animal Ethics Committees of Rakuno Gakuen University (Permit Number: VH19A8).

Bovine sperm viability
Viability of bovine sperm was determined by the eosin-nigrosin staining method [4]. Briefly, the sperm was stained with 0.5% 

eosin Y (Muto Pure Chemical, Tokyo, Japan) for 15 sec, and subsequently stained with 0.5% nigrosin (Wako Pure Chemical) for 
15 sec. The sperm was smeared on a glass slide and then air-dried. Since dead sperm was dyed red, sperm viability was calculated 
as the ratio of the number of non-stained cells to total cells. Viability was determined immediately after transfection.

Flow cytometry analysis
The transfected sperm was analyzed by flow cytometry to evaluate the efficacy of droplet-EP for the transfection of EGFP into 

sperm. The sperm was fixed in 4% paraformaldehyde for 10 min at room temperature. After washing twice with PBS, they were 
analyzed using a FACS Verse system (BD Biosciences, San Jose, CA, USA). The data were further analyzed using Flow Jo 10 
(FlowJo, Ashland, OR, USA).

Statistical analysis
Statistical analysis was performed via one-way ANOVA corrected for multiple comparisons with the Holm-Bonferroni method, 

using Kaleida Graph software (Hulinks, Tokyo, Japan).

RESULTS

Droplet-EP efficiently transfects EGFP plasmid DNA into bovine fibroblasts
We previously reported that the transfection efficiency of plasmids into bovine fibroblasts was extremely low using commercially 

available lipofection reagents [19]. Hence, we initially attempted to transfect a mammalian expression plasmid into bovine 
fibroblasts using the droplet-EP technique. As previously reported [24, 25], we floated a droplet including the cells and plasmids 
in silicone oil (Fig. 1). Under the lower current, the droplet frequently moved back and forth between the electrodes. An increase 
in the electric field caused morphological changes to the droplet (flattening). Eventually the droplet attached to both electrodes and 
created a short circuit. For the transfection into bovine fibroblasts, we encapsulated 1.0 × 105 cells and 0.12 pmol plasmid in a 3.0 
µl droplet, and applied a voltage of 2.0, 3.0, 3.5, or 4.0 kV. Previously, we transfected plasmids into human embryonic kidney cells 
using droplet-EP [25]. In this series, we found that droplet size is negatively correlated with transfection efficiency when voltage, 
cell number, and DNA amount were constant. Since 2–3 µl droplet was most effective for transfection of plasmids into 1.0 × 105 of 
the cells, we first tried to transfect the EGFP-encoding plasmid using a 3.0 µl droplet. Electric current <2.0 kV failed to generate 
a short circuit, and did not result in transfection (Fig. 2A). In contrast, 3.0 kV caused a short circuit, followed by the expression 
of EGFP in 27.3 ± 9.7% of live cells (Fig. 2A and 2B). Both 3.5 and 4.0 kV transduced the plasmid into the cells to a significant 
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degree, despite the inversely proportional relationship between the transfection efficiency and voltage. Notably, cell viability was 
also inversely proportional to the voltage (Fig. 2C). Cell viability was 82.2 ± 2.5, 69.0 ± 4.1, 57.9 ± 0.9, and 49.4 ± 1.8% when 
the cells were subjected to droplet-EP at 2.0, 3.0, 3.5, and 4.0 kV, respectively. In a further step, we multiplied the efficiency and 

Fig. 1.	 Configuration of a droplet-electroporation (EP) apparatus. (A) Positive and negative electrodes were connected to a high 
voltage direct current (DC) power supply. (B) A medium droplet containing cells and plasmids or recombinant proteins was 
floated in silicone oil and placed between the electrodes.

Fig. 2.	 Efficiency, viability, and yields of transfection of the pEGFP-N2 plasmid into bovine fibroblasts by droplet-EP. A total of 4 × 105 
bovine earlobe fibroblasts were subjected to droplet- electroporation (EP) at the following settings: 2.0, 3.0, 3.5, or 4.0 kV. Cell viability 
was determined immediately after charging the cells through droplet-EP. Subsequently, the transfected cells were cultured for 24 hr. After 
staining the nuclei with Hoechst33342, the transfection efficiency was determined using a laser-scanning microscope. (A) Transfection ef-
ficiency was determined based on the proportion of enhanced green fluorescent protein (EGFP)-expressing cells in Hoechst33342-positive 
cells. (B) A representative image of EGFP-transfected cells. Scale bar=50 µm. (C) Cell viability was determined using the trypan blue 
staining method. (D) The yields of transfections were determined by multiplying the efficiency and cell viability obtained at each voltage. 
“Intact” indicates that droplet-EP was not performed. Values are means ± one standard deviation over three wells. *P<0.05 vs. intact cells.
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cell viability at each voltage to more precisely determine the effectiveness of droplet-EP. These indices, namely transfection yield, 
resulted in transfection at each setting. As shown in Fig. 2D, 3.0 kV resulted in the greatest yield (19.1 ± 7.9%, n=3), followed 
by 3.5 kV and 4.0 kV (14.4 ± 3.7% and 9.5 ± 1.8%, respectively). On the other hand, transfection yield and cell viability of EP 
using the commercially available electroporator NEPA21 at the optimal setting was 40.2 ± 5.0 and 76.9 ± 2.6%, respectively. We 
also transfected the EGFP-encoding plasmid to the bovine fibroblasts by lipofection. Neither Lipofectamine 2000, Lipofectamine 
LTX, Fugene 6, nor Fugene HD effectively transfected the plasmid to the cells: Transfection efficacies of Lipofectamine 2000, 
Lipofectamine LTX, Fugene 6, and Fugene HD were 0.72 ± 0.87% (n=5), 0.00 ± 0.00% (n=5), 0.16 ± 0.38% (n=5), and 1.63 ± 
0.79% (n=5), respectively. Collectively, these results indicate that the optimal condition of droplet-EP effectively transfects plasmid 
DNA into bovine fibroblasts at a comparable level with that reported using a commercially available electroporator.

Droplet-EP efficiently transfects EGFP plasmid DNA into swine fibroblasts
We subsequently attempted to transfect plasmids into swine cells. For this purpose, we isolated fibroblasts from pieces of swine 

earlobes using a method previously described [1]. Morphologically, swine earlobe fibroblasts were flatter than bovine earlobe 
fibroblasts, and were proliferative for ≥20 passages (Fig. 3A). In accordance with bovine fibroblasts, swine fibroblasts were not 
transfected with the pEGFP-N2 plasmid when droplet-EP was performed at the 2.0 kV setting (Fig. 3B). On the other hand, 
transfection efficiency was increased in a directly proportional manner to the voltage at ≥4.0 kV. At 4.0 kV, 18.3% of cells were 
transfected with the plasmid. Even at this intense voltage setting, >75% cells were alive, although cell viability was slightly higher 
at lower voltage settings (Fig. 3C; 90.5 ± 2.3%, 87.9 ± 1.3%, and 82.6 ± 2.2% at the 2.0, 3.0, and 3.5 kV settings, respectively). 
Given that viability of bovine earlobe fibroblasts was ~50% at the 4.0 kV setting, swine earlobe fibroblasts were resistant to 
relatively higher voltage. Figure 3D exhibits the yields of transfection to swine earlobe fibroblasts. The 4.0 kV setting resulted 
in the highest yield (14.0 ± 5.9%), followed by the 3.0 and 3.5 kV settings (11.3 ± 6.7% and 12.7 ± 6.2%, respectively). The 
transfection yields of the NEPA21 at the optimal condition were ~3-fold higher (40.6 ± 9.0%) than those obtained with droplet-EP. 
Meanwhile, cell viability (78.3 ± 3.8%) after EP using a NEPA21 was slightly less than that of droplet-EP at 4.0 kV setting. These 
results show that droplet-EP sufficiently transfected a plasmid into swine fibroblasts but that transfection efficacy was lower than 
that obtained with the commercially available electroporator.

Fig. 3.	 Efficiency and cytotoxicity of transfection of the pEGFP-N2 plasmid into swine fibroblasts by droplet-electroporation (EP). Swine 
fibroblasts were isolated from earlobe skin, and subjected to transfection by droplet-EP. (A) Morphology of swine earlobe fibroblasts. 
Scale bar=50 µm. (B–D) Transfection efficiency (B), cell viability (C), and yields of transfection (D) were determined (as shown in Fig. 
1). Values are means ± one standard deviation over three wells. *P<0.05 vs. intact cells.
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Droplet-EP introduces EGFP protein into mouse and bovine spermatozoa
In the dairy scientific fields, gonadal cells were recently manipulated by gene editing [6, 46]. This requires that exogenous 

proteins or nucleotides are introduced into the cells. Notably, sperm cannot survive under cell culture conditions for >1 day [7]. 
Considering that cells typically require 24 hr to produce a sufficient amount of recombinant proteins, the introduction of a plasmid 
may not be applicable to sperm. Therefore, we attempted to introduce a purified protein into sperm using the droplet-EP approach. 
We are aware of no previous study investigating the transfection of recombinant protein to cells through droplet-EP. The present 
study was the first to introduce recombinant EGFP into mouse sperm which have previously been subjected to the introduction 
of proteins through conventional EP [40]. Droplet-EP at the 3.0 kV setting, which is the lowest voltage producing a short circuit 
using a 3.0 µl of sperm suspension, killed 91.3 ± 3.3% of total sperm (n=15) although 77.0 ± 9.1% (n=15) of sperm was alive 
without EP. To reduce the voltage producing a short circuit, we increased the size of the droplet to 10 µl, which included 2.7 µg of 
purified recombinant protein and 5.0 × 105 spermatozoa. In this case, 1.5 kV sufficed to generate a short circuit through droplet-EP. 
Reduction of voltage to 1.5kV increased sperm viability to 55.2 ± 15.6% (n=15). Figure 4A shows a microscopic image of a sperm 
after transfection at this setting. A number of spermatozoa exhibited an intense green florescent signal in the head, middle piece, 
and tail part, suggesting the successful transfection of EGFP through the droplet-EP method. In agreement with this finding, flow 
cytometric analysis demonstrated that 24.9% of the cells showed a stronger green fluorescent signal compared with untransfected 
cells (Fig. 4B).

We subsequently examined whether droplet-EP may be applicable to protein transfection into bovine sperm. As with the transfection 
into mouse sperm, we encapsulated frozen-thawed bovine sperm (5.0 × 105 cells) and 2.7 µg of recombinant EGFP in 10 µl of 
Opti-MEM, and applied a voltage (1.5 kV). Similar to the mouse sperm, a proportion of spermatozoa exhibited bright green 
fluorescence after droplet-EP with the EGFP (Fig. 4C). Moreover, flow cytometry demonstrated that 71.5% of the transfected cells 
showed a green fluorescent signal (Fig. 4D), and 24.9% showed intense green fluorescence, suggesting that the transfection efficacy 
was not constant among the sperm samples. Nevertheless, droplet-EP may be applied to the transfection of proteins into animal sperm.

Fig. 4.	 Introduction of recombinant enhanced green fluorescence protein (EGFP) to mouse and bovine sperm. E. coli recombinant EGFP 
was transduced into mouse (A, B) and bovine (C, D) sperm by droplet- electroporation (EP) with a 10 µl droplet at the 1.5 kV setting. 
The nuclei were counterstained with Hoechst33342. (A, C) Representative images of mouse (A) or bovine (C) sperm transfected with 
recombinant EGFP. Arrowheads indicate EGFP-transfected spermatozoa. Scale bar=10 µm. (B, D) Histograms of the flow cytometric 
analysis of EGFP in mouse (B) or bovine (D) sperm. Mouse or bovine sperm were mixed with EGFP followed by droplet-EP (blue-filled 
area, Droplet-EP) or mixed with EGFP without droplet-EP (red-filled area, Intact). Representative data from three experiments are shown.
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DISCUSSION

Transfection of gene fragments or recombinant proteins is currently widely performed in veterinary basic and clinical research. 
EP is one of the most effective methods for transfection. It is notable that EP allowed us to transfect plasmids into bovine cells, 
whereas lipofection methods were scarcely able to introduce them into the cells [19]. A major problem hindering the utilization 
of EP is cost. For example, the cost of NEPA21, one of the most widely used instruments for EP in livestock animal cells [17], is 
approximately 20,000 USD. Other popular instruments also typically cost 10,000–25,000 USD. The manipulation of cells with 
exogenous genes or proteins through EP is thus limited to research laboratories with relatively substantial funds. In contrast, 
droplet-EP only requires a DC power supply, which costs approximately 2,000 USD. Considering that droplet-EP does not require 
any special expendables, the present study provides basic information regarding a novel direction for transfection with high 
efficiency and low cost.

Although the proliferation of most somatic cells is determined by the Hayflick limit [15], numerous fibroblast-lined cells are 
still able to divide after 10 passages under appropriate culture conditions [23]. Moreover, fibroblasts express a relatively wide 
variety of signaling molecules. Thus, they are frequently used as atypical models for research into intracellular signaling cascades. 
For example, mouse derived-NIH3T3 and Swiss3T3 cells have been used to investigate the insulin, calcium, and Notch signals 
[32, 39, 43]. In these experiments, gene manipulations (e.g., overexpression, gene knockdown, gene knockout, and gene editing) 
were conducted by introducing exogenous gene fragments or recombinant proteins [3, 22]. On the other hand, non-negligible 
variations in cell signaling exist, which are derived from differences between species [2, 33]. Therefore, it is necessary to establish 
transfection methods for several species-derived fibroblasts. In this study, we determined the optimal setting of droplet-EP for 
bovine and swine fibroblasts; both are difficult to transfect through conventional lipofection [20, 34], and droplet-EP thus facilitates 
the study of cell signaling events in bovine and swine cells.

In previous studies, droplet-EP introduced plasmids into human fibroblasts cells at a relatively low voltage without generating 
a short circuit [25]. In contrast, we found that higher voltage was required for transfection into bovine and swine fibroblasts in the 
present study. Transfection of the plasmid was only observed in droplets which generated a short circuit between the electrodes. 
Thus, the generation of a short circuit rather than high voltage appears to be the crucial factor in introducing DNA and protein 
to livestock animal cells. We also observed the effective transfection of recombinant protein into mouse and bovine sperm by 
generating a short circuit at a low voltage setting, supporting this notion.

So far, a conventional electroporation was reported to effectively introduce recombinant Cas9 protein into mouse sperm [46]. 
Since transfection efficiency as well as viability of sperm have not been described in this report, we are not able to compare 
effectiveness of conventional EP and droplet-EP regarding protein transfection to sperm. In this report, 55% spermatozoa were 
alive after droplet-EP. Given that 23% sperm died during a freeze-thawing process, droplet-EP virtually damaged less than only 
one-third of the cells using an optimal setting (1.5kV). Additionally, we could introduce recombinant EGFP protein into significant 
proportion (mouse, 24.9%; cattle, 71.5%) of sperm. Nevertheless, we have to evaluate whether efficacy of droplet-EP is enough to 
proceed downstream applications such as genome editing and fertility treatments.

One of the disadvantages of droplet-EP might be limitation of cell number for transfection. This limitation is attributed to size of 
droplet. We had to set less than 10 µl droplet between the electrodes at a 6 mm interval. In the droplet, we concentrated 1.0 × 105 
fibroblasts, which is comparable to the number of cells for lipofection at 35 mm dish scale. Taking advantage of lipofection and 
conventional electroporation techniques, plasmids can be introduced into more than 1.0 × 106 cells by a single transfection. Thus, 
flexibility of cell numbers is desirable for droplet-EP. In this study, we found that generation of short circuit is a critical factor to 
introduce plasmids into the cells by droplet-EP. In other words, if we can make short circuit in a larger droplet, we might introduce 
plasmids to larger number of cells. To achieve this, we have to perform droplet-EP in a larger droplet between more than 6 mm 
interval of electrodes.

The reasons for the markedly lower transfection efficacy observed in bovine cells remain unclear [37]. Transfection efficiency 
is highly dependent on membrane permeability, which is determined by the size and number of pores on the plasma membrane 
[41]. In addition, the duration of high permeability is also a critical factor influencing transfection [44]. These factors are highly 
dependent on membrane flexibility, which is determined by the lipid constituents of the plasma membrane. Previous reports showed 
that the content of cholesterol is somewhat higher in bovine cells than in human and mouse cells [8, 27]. Cholesterol confers 
inflexibility to the plasma membrane [38]. Therefore, temporary deprivation of cholesterol may improve the transfection efficiency 
in bovine cells by droplet-EP as well as other transfection techniques.

Addition of electrolytes or dimethyl sulfoxide is considered another option for improving the transfection efficiency by droplet-
EP [5, 36]. Alternatively, repeated generation of a short circuit may increase the transfection efficiency in livestock animal cells. 
Since swine fibroblasts are relatively resistant to high voltage, the repeated generation of short circuits appears to be particularly 
suitable for these cells. Further improvements may increase the effectiveness of nucleotide and protein transfection into livestock 
animals (e.g., bovine, swine, and chicken) by droplet-EP.

In this study, we transfected bovine and swine cells with an EGFP-expressing plasmid. The molecular weight of the EGFP-
expressing plasmid was ~4.7 kb. Transfection efficiency is critically influenced by the size of the introduced materials [12]. For 
example, introduction of a 3.5 kb and a 10.9 kb plasmid to mesenchymal stem cells through conventional EP yielded a 42% and 
5% transfection, respectively [26]. Further studies are warranted to optimize the transfection of larger products into bovine and 
swine cells.

In Japan, livestock animals are bred mainly through artificial insemination. A decrease in the rate of conception is one of the 
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greatest challenges especially for dairy farmers [10, 18]. The low conception rate may be attributed to the fertilizing capacity of 
sperm [28]. To date several lines of study have attempted to improve male fertility by introducing exogenous gene fragments or 
proteins into sperm. For instance, Ma et al. reported that the introduction of miR-26a-5p into swine sperm potentiated fertility [30]. 
Moreover, recent advances in gene editing using CRISPR/Cas9 system technologies may confer high fertilizing capacity to sperm 
[16, 40]. Hence, the development of transfection methods with simple operation and low cost is warranted. In the present study, 
droplet-EP transfected the EGFP into one-quarter of the frozen-thawed bovine spermatozoa simply and cost-effectively. Droplet-EP 
may therefore be applicable to the manipulation of bovine sperm in veterinary basic and clinical research.
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