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Graphical Abstract

Summary
In the US dairy population, the number of genotyped animals has increased rapidly over the decade. The 
computation of large-scale genomic evaluations can be highly expensive, especially when conducting more 
frequent evaluations. One solution to reduce time and cost could be the use of indirect genomic prediction. 
We investigated how indirect prediction should be conducted and discovered a practical approach to calculate 
accurate and unbiased indirect genomic predictions using SNP marker effects from a small number of randomly 
selected genotyped animals. The results of this study can be applicable and useful in other breeds and species.

Highlights
•	 Genomic evaluation is expensive with a large number of genotyped animals.
•	 Indirect genomic prediction dramatically reduces the computing cost by using randomly selected 

genotyped animals.
•	 Indirect genomic evaluations are accurate and unbiased.
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Abstract: Over half a million Holsteins are being genotyped annually in the United States. The computational cost of including all 
genotypes in single-step genomic (ssG)BLUP is high, although it is feasible to conduct large-scale genomic prediction using an efficient 
algorithm such as APY (algorithm for proven and young). An effective method to further reduce the computing cost could be the use of 
indirect genomic predictions (IGP) for genotyped animals when they have neither progeny nor phenotypes. These young genotyped ani-
mals have no effect on the other genotyped animals and could have their genomic prediction done indirectly. The main objective of this 
study was to calculate IGP for various groups of genotyped animals and investigate the reduction in computing time as well as bias and 
accuracy of the IGP. We compared IGP with genomic (G)EBV for 18 linear type traits in US Holsteins, including 2.3 million (M) geno-
typed animals. The full data set consisted of 10.9M records for 18 linear type traits up to 2018 calving, 13.6M animals in the pedigree, 
and 2.3M animals genotyped for 79K SNP. For IGP, ssGBLUP included all genotyped animals except those with neither progeny nor 
phenotypes by year from 2014 to 2018 (i.e., the target animals). The SNP marker effects were computed based on GEBV for genotyped 
animals that had progeny, or phenotypes, or both. Further, IGP were calculated for target genotyped animals in each year group. For all 
genotyped animal groups from 2014 to 2018, the coefficients of determination (R2) of a linear regression of GEBV on IGP were 0.960 
for males and 0.954 for females for 18 traits on average. To reduce computing costs, the SNP marker effects were calculated based on 
GEBV from randomly selected genotyped animals from 15K to 60K. By randomly selecting a small number of genotyped animals, the 
computing time was dramatically reduced. As more genotyped animals were randomly selected to calculate SNP effects, R2 was higher 
(more accurate) and the regression coefficient was lower (more inflated IGP). In a practical genomic evaluation in US Holsteins, to get 
sufficient contributions from GEBV, 25K to 35K is a rational number of genotyped animals that can be randomly selected to compute 
SNP effects and obtain accurate and unbiased IGP. Considering the computing time and both unbiasedness and accuracy of IGP, genomic 
evaluation can be conducted separately in GEBV for genotyped animals with phenotypes or progeny and in IGP for young genotyped 
animals. This can be a practical solution when conducting a large-scale genomic evaluation and would enable more frequent evaluation 
at lower cost, especially when many genotyped animals have neither phenotypes nor progeny.

Heavy computation is inevitable in large-scale genomic evalua-
tions. Since the national genomic evaluation for US Holsteins 

started in 2009, the number of genotyped animals has increased 
considerably. When conducting genomic prediction for a large 
number of genotyped animals, solving large mixed model equa-
tions (MME) is the most time-consuming process. Constructing 
the inverse of the combined relationship matrix (H−1)—which is 
composed of the inverse of the pedigree-based relationship matrix 
(A−1) for all animals, the inverse of the genomic relationship ma-
trix (G−1), and the inverse of the pedigree-based relationship ma-
trix A22

1−( )  for all genotyped animals (Aguilar et al., 2010; Chris-

tensen and Lund, 2010)—is another key process in single-step ge-
nomic BLUP (ssGBLUP). The A−1 can be recursively obtained 
with Henderson’s method (Henderson, 1976; Hudson et al., 1982), 
and the matrix by vector multiplication by iteration on data is 
highly efficient without constructing A−1 in solving the MME for a 
large number of animals. In addition, A22

1−  can be calculated effi-
ciently (Strandén and Mäntysaari, 2014; Masuda et al., 2017; 
Strandén et al., 2017). However, calculation of G−1 is expensive 
using a direct inversion method, even with sparse matrix opera-
tions (Pérez-Enciso et al., 1994; Masuda et al., 2015). With refer-
ence to Henderson’s method, Misztal et al. (2014a) and Fragomeni 

et al. (2015) proposed a recursive method called the algorithm of 
proven and young animals (APY). This method calculates the ap-
proximated G−1 for a large number of noncore genotyped animals 
based on the direct G−1 for a minimum number of core genotyped 
animals, assuming that these core animals represent most of the 
independent chromosome segments in the genome. As of 2020, the 
number of genotyped US Holsteins has reached over 3 million, 
with half a million genotyped animals being added every year 
(CDCB, 2020). Even using the APY method, the computational 
cost is still high when including all genotyped animals. This could 
create a bottleneck in the future, especially when conducting fre-
quent evaluations (e.g., every month or every week). One way to 
overcome issues with computing cost is to remove old genotyped 
animals that have been already culled and had neither progeny, nor 
phenotypes, nor semen stock (Koivula et al., 2018). However, 
when millions of animals are genotyped in several years, removing 
old genotyped animals will not be a substantial solution to the 
heavy computation required in genomic evaluation. Another op-
tion is to remove the young genotyped animals with neither prog-
eny nor phenotypes from the ssGBLUP and calculate indirect ge-
nomic predictions (IGP) for those animals. If SNP effects based on 
genomic (G)EBV for other animals have sufficient genomic infor-
mation, IGP for those young genotyped animals can be calculated 
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by a linear function of SNP effects and contents. Therefore, it may 
be more practical to predict their genomic performance separately 
and indirectly, rather than to include them in ssGBLUP evaluations 
to obtain GEBV.

About 90% of the genotyped animals included in the genomic 
evaluation for type traits in US Holsteins are young females (heif-
ers), which may have neither phenotypes for type traits nor progeny 
in the future, although they may have other phenotypes (e.g., pro-
duction traits; Tsuruta et al., 2021). Including all of these animals in 
the main routine evaluation may not be reasonable because of the 
computing cost. Garcia et al. (2020) reported that the accuracy of 
IGP was as high as that of GEBV in American Angus data, where 
about 70% of the genotyped animals had phenotypes. In that study, 
they did not investigate which animals should be included in the 
computation of GEBV and IGP or how GEBV for those genotyped 
animals affect accuracy and bias in IGPs when those genotyped 
animals have neither phenotype nor progeny. When genotyped 
animals have phenotypes, those phenotypes should be used to 
calculate GEBV; therefore, those genotyped animals should not 
be the target for IGP. In addition, the total computing cost to ob-
tain GEBV and IGP is unknown. The IGP, which is the genomic 
prediction for genotyped animals indirectly calculated from SNP 
marker effects based on GEBV for other genotyped animals, could 
be a practical choice to reduce the computational cost in genomic 
evaluations. This is true if the IGP has no impairment in accuracy 
and bias. The objective of this study was to investigate a practi-
cal approach to calculating IGP to reduce the computational cost 
without deteriorating accuracy and bias in genomic predictions for 
a large number (i.e., over 2 million) of genotyped animals in US 
Holsteins using 18 linear type traits.

Phenotypes for 18 linear type traits and pedigree information 
used in the 2018 genetic evaluation were provided by the Holstein 
Association USA Inc. (Brattleboro, VT). Genotypes up to 2018 
were provided by the Council on Dairy Cattle Breeding (Bowie, 
MD). The full data set consisted of 10,946,264 repeated records for 
7,216,767 cows, including 7,044,210 cows with no genotypes up 
to 2018 calving, 13,591,145 animals in the pedigree, and 2,334,951 
animals genotyped for 79,294 SNP. Different start dates (ranging 
from 2014 until 2018) based on year of birth were used to create 5 
different sets of genotyped animals. Genotyped animals with phe-
notypic records or progeny were included in each genomic data set 
to obtain GEBV with the ssGBLUP. Genotyped animals with nei-
ther progeny nor phenotypes and born after the start date would 
obtain IGP using the SNP effects based on the GEBV for other 
animals with phenotypes or progeny. First, genomic prediction was 
conducted via ssGBLUP using the full data set (i.e., benchmark). 
When calculating GEBV, 20K genotyped animals were randomly 
chosen as core animals for APY. The MME for the 18-trait animal 
model (Tsuruta et al., 2002) was solved via the BLUP90IOD pro-
gram, which uses the preconditioned conjugate gradient method by 
iteration on data (Tsuruta et al., 2001). The convergence criterion 
of 10−12 based on relative adjusted right-hand sides (Tsuruta et al., 
2001) was used. The program was originally created to calculate 
BLUP and revised with the ssGBLUP feature later. Second, ssGB-
LUP was conducted to predict GEBV using each genomic data set 
from 2014–2018 to 2018, in addition to all phenotypes and pedi-
gree information as described before. Third, SNP effects were cal-
culated via POSTGSF90 (Aguilar et al., 2014; Misztal et al., 

2014b) from the GEBV for each genomic data set based on the 
formula (Wang et al., 2012) ˆ ,̂u DZ'G a= −λ 1  where û  is a vec-

tor of SNP marker effects, λ =
σ

σ
u

a

2

2
,  where σu

2  and σa
2  are the 

variances of u and a, respectively; D = I; Z is a matrix of genotypes 
with the dimension of the target genotyped animals by the number 
of SNPs; and â  is a vector of additive genetic effects (GEBV). 
When calculating SNP effects by GEBV using all genotyped ani-
mals with phenotypes or progeny in each year group, the same 20K 
core animals were used for APY. In contrast, when calculating SNP 
effects by GEBV using randomly selected genotyped animals from 
those animals, ranging from 15K to 60K, the APY was not needed 
(i.e., no core animals), so these animals were not the same animals 
as in the core previously used for APY to obtain GEBV. Last, IGP 
for other genotyped animals, which had neither progeny nor phe-
notypes (i.e., young bulls or heifers) in 2014–2018, 2015–2018, 
2016–2018, 2017–2018, and 2018 were calculated from the SNP 
marker effects as IGP = Zû  (Strandén and Garrick, 2009; Gar-
cia et al., 2020) via PREDF90 (Misztal et al., 2014b). This calcula-
tion of IGP requires accurate SNP estimates from the GEBV. To 
calculate the SNP marker effects, all genotyped animals or a small 
number of randomly selected genotyped animals can be used (Lou-
renco et al., 2015). In a nutshell, the steps of this process for the 
2014–2018 genomic data set, for example, involved the computa-
tion of GEBV using 38% of all genotyped animals (886,176) and 
all nongenotyped animals with phenotypes and progeny available 
in ssGBLUP (Table 1). Next, SNP marker effects were calculated 
based on GEBV from those genotyped animals or random subset 
thereof. Finally, IGP for the remaining 62% of the genotyped ani-
mals (1,448,775) that had neither progeny nor phenotypes were 
computed by those SNP effects (Table 1). Likewise, in the 2018 
genomic data, 88% of the genotyped animals directly received 
GEBV, all or a randomly selected subset of them were used to esti-
mate SNP effects, and 12% of the genotyped animals were used to 
estimate IGP.

Table 1 shows computing time (wall-clock time) in hours using 
4 CPU cores and the number of iterations for genomic data sets 
2014–2018, 2015–2018, 2016–2018, 2017–2018, and 2018. 
Strictly speaking, computing time can vary depending on the com-
putational environment, such as software, hardware, and sharing 
conditions. With the full data set, the computing time for GEBV 
was 177 h with 1,433 iterations. The computing time was mostly 
consumed by calculating G−1 with APY (26 h) and solving the 
MME (150 h). As the number of genotyped animals for GEBV in-
creased, the computing time for IGP in Table 1 increased substan-
tially due to the heavy calculation of SNP effects in 
ˆ ,̂u DZ'G a= −λ 1  when computing G−1, even with APY for a large 
number of genotyped animals in a. On the other hand, the matrix-
vector multiplication in IGP = Zu took a few minutes for all data 
sets. The total computing time for calculations of GEBV and IGP 
ranged from 99 h for 2014–2018 to 223 h for 2018. In this study, 
the POSTGSf90 program was used to calculate SNP marker ef-
fects, and about 80% of the computing time was spent to create 
G−1. However, if the SNP prediction is implemented inside the 
BLUP90IOD2 program, this additional computing time can be 
saved by avoiding creating the same G−1 twice. Another choice is 
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to store G−1 as an output file when running BLUP90IOD2 and to 
read it again with POSTGSF90. Table 1 also shows the computing 
time for IGP when excluding the computing time of creating G−1. 
For example, in the 2018 data, it took 70 − 13 = 57 h to calculate 
G−1 with APY. By subtracting these hours from 223 h, now the 
computing time for IGP is 166 h, which is below the 177 h for the 
full data set.

To further reduce the computing time for the calculation of 
IGP, SNP marker effects were predicted from only a portion of the 
genotyped animals in a; that is, randomly selected from 38% of all 
genotyped animals (i.e., 886,176 from 2014 to 2018): 15K, 20K, 
25K, 30K, 35K, 40K, 45K, 50K, 55K, and 60K. The computation 
of G−1 for those small number of animals in a was fast, even with 
the direct inversion, and the corresponding computing time of SNP 
effects took less than 1 h using any number of selected genotyped 
animals from 15K to 60K. As a result, the total computing time was 
reduced from 99 h to 73 h for the 2014–2018 data and from 223 h 
to 151 h for the 2018 data (Table 1).

Table 2 shows b0 and b1 on the regression model fitting GEBV 
= b0 + b1 × IGP for genotyped animals that had neither progeny 
nor phenotypes in each year group, and mean absolute differences 
(MEAN) and maximum absolute differences (MAX) between 
GEBV and IGP for the genomic data from 2014 to 2018 using SNP 
effects in IGP from randomly selected 30K genotyped animals. 
These values from the 2015–2018, 2016–2018, 2017–2018, and 
2018 year groups are not shown in the table because they were 
similar to those from 2014–2018 (e.g., b0 ranging from 1.2 to 1.4 
for males and from 1.2 to 1.3 for females). The MEAN values were 
similar to b0 values except for traits with small or negative genetic 
gains. The sum of the b0 value and b1 × IGP must be reported to-
gether to avoid bias with the interpretation of IGP. The correlations 
of MEAN, MAX, and b0 with standardized genetic progress (ΔG) 
from Tsuruta et al. (2021) were high (0.96 to 0.98) for all genomic 
data sets. To compare b0 and ΔG on the same scale, MEAN, MAX, 
and b0 were also standardized by dividing by each genetic standard 
deviation. The high positive correlations indicate underprediction 
of IGP when ΔG is greater or selection is more intense. This bias 
in IGP is attributable to the different genetic base for each trait, 
and it can be adjusted by the mean difference between GEBV and 
IGP (Lourenco et al., 2018). The whole calculation of GEBV is 
required to obtain the exact genetic difference; however, because 
the target genotyped animals for IGP from the 2014–2018 genomic 
data spanned 5 years, the adjustment based on b0 or the genetic 

gains will be simple, rational, and practical. Without adjusting the 
genetic base correctly, these genotyped animals with IGP cannot be 
ranked together with other animals with GEBV. In this case, these 
animals with IGP should be ranked separately. Table 2 also shows 
b1 values on the regression model, which is the scaling factor or 
the slope on IGP, using the genomic data from 2014 to 2018. The 
b1 values from the 2015 to 2018 genomic data groups were similar 
to those from 2014 to 2018 on average (not shown in Table 2), 
ranging from 0.99 to 1.01 for males and 0.99 to 1.00 for females. 
The scaling factor indicates inflation (deflation) of IGP when b1 
<1.0 (>1.0). Overall, the average scaling factor showed no infla-
tion or deflation, ranging from 0.99 to 1.01 on average for all data 
sets. However, b1 ranged from 0.94 to 1.06 for males and from 
0.95 to 1.05 for females for the individual 18 traits. The correlation 
between b1 and ΔG was high (0.84), implying that IGP is more 
deflated or GEBV is more inflated when the ΔG is larger (i.e., more 
directional selection), and less deflated IGP or less inflated GEBV 
when the trait has an intermediate optimum or assortative mating 
is being practiced (Tsuruta et al., 2021). Table 2 also shows the 
coefficient of determination (R2) of the regression model and the 
correlation between R2 and ΔG for the genomic data from 2014 to 
2018. The R2 were high (0.950 and 0.949 for males and females 
on average, respectively, equivalent to correlations from 0.975 and 
0.974) and ranged from 0.908 to 0.975 for males and from 0.905 
to 0.974 for females for 18 traits. The R2 did not change over the 
years by increasing the number of genotyped animals for calcula-
tion of GEBV, ranging from 0.95 to 0.97 for males and from 0.95 to 
0.96 for females (R2 from 2015 to 2018 are not shown in Table 2). 
This indicates that IGP were accurate regardless of the number of 
genotyped animals used to compute GEBV (for genotyped animals 
with phenotypes or progeny) and IGP (for genotyped animals with 
neither phenotypes nor progeny). Negative correlations (−0.44 
and −0.55 for males and females, respectively) between R2 and 
ΔG indicate that traits with more directional selection tend to have 
lower accuracy in IGP.

As described before, 10 randomly selected genotyped animal 
groups were used to reduce the computing time for calculation 
of IGP in the 2014–2018 data (i.e., 15K, 20K, 25K, 30K, 35K, 
40K, 45K, 50K, 55K, and 60K genotyped animals from 886,176). 
Figure 1 shows the average b1 for all 18 traits changing over these 
10 animal groups. The b1 indicates slight inflation of IGP when 
all 886,176 genotyped animals in 2014–2018 were used. How-
ever, when randomly selected genotyped animals were used, IGP 
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Table 1. Numbers of genotyped animals used for the computation of genomic prediction (GEBV) and indirect genomic prediction (IGP), computing time in 
hours, and number of iterations (ITR) to converge for each genotyped data set

YOB1

No. of IGP
No. of 
GEBV

No. of 
IGP/no. of GEBV 

(%)

Computing time2 (h)
No. of 

ITRMale Female Total GEBV IGP Total

2014–2018 144,602 1,304,173 1,448,775 886,176 62 72 27 − 5 (1) 99 − 77 (73) 1,003
2015–2018 117,550 1,171,398 1,288,948 1,046,003 55 106 35 − 8 (1) 141 − 114 (107) 1,052
2016–2018 89,025 1,000,120 1,089,145 1,245,806 47 118 45 − 10 (1) 163 − 128 (119) 1,101
2017–2018 57,699 707,181 764,880 1,570,071 33 140 60 − 12 (1) 200 − 152 (141) 1,177
2018 23,217 257,044 280,261 2,054,690 12 153 70 − 13 (1) 223 − 166 (151) 1,332
All — — — 2,334,951 — — — 177 1,433

1YOB = years of birth for genotyped animals included in IGP defined as genomic data groups.
2Computing times in parentheses are when randomly selected genotyped animals were used to calculate IGP. In computing times for IGP and Total, “− X” 
indicates hours without creating the inverse of genomic relationship matrix.
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showed slight deflation to inflation when the number of animals 
increased from 15K to 60K, indicating that the genetic variance 
was larger in IGP than in GEBV as more genotyped animals were 

selected. When 25K genotyped animals were used, b1 was close 
to 1.0. This result suggests that a number of genotyped animals 
between 25K and 35K could be the appropriate range for IGP when 
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Table 2. Intercept (b0), regression coefficient b1, and R2 in genomic (G)EBV = b0 + b1 × IGP,1 mean absolute differences (MEAN) and maximum absolute 
differences (MAX) between GEBV and IGP, and correlations of ΔG2 with each parameter, using SNP estimates for randomly selected 30K genotyped animals 
from 2014 to 2018 genomic data for 18 type traits3

Trait ΔG

b0

 

b1

 

R2

 

MEAN

 

MAX

Male Female Male Female Male Female Male Female Male Female

Stature 1.55 1.70 1.60 1.01 1.00 0.962 0.953 1.71 1.60 2.39 2.42
Strength 0.71 0.85 0.80 0.97 0.97 0.965 0.960 0.85 0.80 1.46 1.48
Body depth 0.88 1.14 1.05 0.98 0.98 0.958 0.953 1.13 1.05 1.75 1.76
Dairy form 1.18 1.81 1.66 1.00 0.99 0.937 0.928 1.81 1.66 2.51 2.48
Rump angle −0.02 −0.05 −0.03 0.95 0.95 0.971 0.969 0.11 0.11 0.62 0.73
Rump width 1.11 1.25 1.17 0.98 0.98 0.964 0.958 1.24 1.17 1.86 1.84
Rear legs side view −0.02 0.02 0.01 0.95 0.96 0.977 0.974 0.09 0.09 0.57 0.61
Foot angle 1.17 1.34 1.25 1.00 1.01 0.953 0.945 1.34 1.25 1.85 1.88
Fore attachment 2.10 2.22 2.11 1.03 1.03 0.959 0.947 2.24 2.12 2.83 2.87
Rear udder height 2.19 2.38 2.27 1.05 1.05 0.959 0.943 2.42 2.29 3.01 3.03
Rear udder width 2.00 2.41 2.28 1.06 1.05 0.951 0.931 2.45 2.30 3.04 3.10
Udder cleft 1.31 1.59 1.52 0.99 0.98 0.955 0.949 1.59 1.51 2.13 2.17
Udder depth 1.51 1.35 1.29 0.98 0.99 0.966 0.960 1.34 1.29 1.90 2.01
Front teat placement 1.20 1.43 1.35 0.98 0.98 0.951 0.946 1.39 1.33 1.96 2.08
Teat length −0.21 −0.18 −0.18 0.94 0.95 0.973 0.969 0.18 0.19 0.91 0.93
Rear legs rear view 1.00 1.24 1.15 1.00 1.00 0.946 0.932 1.24 1.15 1.75 1.78
Feet and legs 1.25 1.45 1.35 1.05 1.04 0.926 0.905 1.47 1.36 1.95 2.01
Rear teat placement 1.07 1.29 1.22 0.97 0.97 0.960 0.956 1.28 1.21 1.81 1.86

Mean 1.11 1.29 1.21 0.99 0.99 0.957 0.949 1.33 1.25 1.91 1.95
SD 0.68 0.75 0.72 0.03 0.03 0.012 0.017 0.70 0.66 0.72 0.71
Correlation (ΔG)2 — 0.98 0.98 0.84 0.84 −0.44 −0.55 0.97 0.98 0.96 0.96

1Indirect genomic predictions.
2Genetic progress (adapted from Table 3 in Tsuruta et al., 2021) as correlations with b0, b1, or R2.
3The values of b0, ΔG, MEAN, and MAX were standardized by dividing by the genetic standard deviation for each trait.

Figure 1. Changes in regression coefficient b1 and R2 in genomic (G)EBV = b0 + b1 × IGP (indirect genomic prediction) for randomly selected genotyped 
animals when computing SNP effects for 2014–2018 genomic data (b0 = intercept; b1 = blue bar for male and white bar for female; R2 = solid red line for male 
and dotted red line for female).
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we select genotyped animals randomly to calculate SNP marker 
effects. Figure 1 also shows the average R2 corresponding to b1 
described above. When 35K or 40K genotyped animals were used 
to calculate IGP, the R2 reached the same level as the R2 from all 
886,176 genotyped animals (i.e., 0.960 for males and 0.954 for 
females).

These numbers from 25K to 35K could be considered appropri-
ate as the number of core animals in APY. In our study, the number 
of eigenvalues explaining 98% or 99% in the variation in G was 
around 20K, which means that 20K genotyped animals could pro-
vide sufficient information to accurately estimate the effects of all 
independent chromosome segments in this population. Therefore, 
20K animals can be used as the core in APY under ssGBLUP 
evaluations. However, some of the selected core animals may 
provide redundant information (i.e., some of the animals may be 
highly correlated), possibly increasing the required number of core 
animals that represent all independent chromosome segments to a 
range from 25K to 35K. An additional comparison using the same 
20K core animals from APY to obtain GEBV and calculate SNP 
marker effects was conducted. However, no difference was found 
using these 20K core animals and the randomly selected 20K ani-
mals; therefore, the results are not presented.

Considering the computing time and both biasedness and accu-
racy in IGP, genomic evaluations for a large number of genotyped 
animals can be conducted separately in GEBV and IGP. A small 
number of randomly selected genotyped animals can be used to ac-
curately estimate SNP marker effects and can dramatically reduce 
the computational cost for IGP. The results of this study describe a 
practical solution when conducting a large-scale genomic evalua-
tion and can make more frequent evaluations less costly.
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